Proving...
Does it take more energy to get to Venus or to Mars?
If the heap is initialized for security, then why is the stack uninitialized?
Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?
Is it my responsibility to learn a new technology in my own time my employer wants to implement?
Implement the Thanos sorting algorithm
What does "Its cash flow is deeply negative" mean?
When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?
Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?
How to make a variable always equal to the result of some calculations?
What's the point of interval inversion?
How can I open an app using Terminal?
Inappropriate reference requests from Journal reviewers
Are there languages with no euphemisms?
Why do professional authors make "consistency" mistakes? And how to avoid them?
What is the difference between "behavior" and "behaviour"?
How do I get the green key off the shelf in the Dobby level of Lego Harry Potter 2?
Rotate a column
How to safely derail a train during transit?
Is it safe to use c_str() on a temporary string?
Why didn't Theresa May consult with Parliament before negotiating a deal with the EU?
How can I quit an app using Terminal?
Term for the "extreme-extension" version of a straw man fallacy?
Shade part of a Venn diagram
Can the Reverse Gravity spell affect the Meteor Swarm spell?
Proving $left|begin{smallmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{smallmatrix}right|=(b-a)(c-b)(c-a)(a+b+c)$
The Next CEO of Stack OverflowWhy is $left( begin{smallmatrix} x & y \ y & t \ end{smallmatrix} right)$ orthogonally similar to this?Finding $B,C$ such that $Bleft[begin{smallmatrix}1&2\4&8end{smallmatrix}right]C=left[begin{smallmatrix}1&0\0&0end{smallmatrix}right]$Minimal polynomial of $A := left(begin{smallmatrix} 7 & -2 & 1 \ -2 & 10 & -2 \ 1 & -2 & 7 end{smallmatrix}right)$Solve for A. $Bigl[begin{smallmatrix}9&9\-9&0end{smallmatrix}Bigr]=4A-Bigl[begin{smallmatrix}2&-2\0&2end{smallmatrix}Bigr]A$$begin{vmatrix} 1 & a &bc \ 1& b & ac\ 1&c & ab end{vmatrix}=begin{vmatrix} 1 & a &a^2 \ 1& b&b^2 \ 1& b & c^2 end{vmatrix}$Calculate the determinant $left|begin{smallmatrix} a&b&c&d\ b&a&d&c\ c&d&a&b\d&c&b&aend{smallmatrix}right|$Prove $left|begin{smallmatrix} sin^2x&cot x&1\ sin^2y&cot y&1\ sin^2z&cot z&1 end{smallmatrix}right|=0$ if $x+y+z=pi$Prove that $begin{vmatrix} xa&yb&zc\ yc&za&xb\ zb&xc&ya\ end{vmatrix}=xyzbegin{vmatrix} a&b&c\ c&a&b\ b&c&a\ end{vmatrix}$ if $x+y+z=0$Without expanding, show that $left| begin{smallmatrix} 3&4&5 \ 15&21&26 \ 21&29&36 \ end{smallmatrix}right|=0$Showing $P^TP=I_n-frac1n11^T$ if $left(begin{smallmatrix}frac1{sqrt n}&cdots&frac1{sqrt n}\&Pend{smallmatrix}right)$ is orthogonal
$begingroup$
Prove that$$begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}=(b-a)(c-b)(c-a)(a+b+c)$$
My attempt:
$$begin{align}begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}&=begin{vmatrix}0&1&0\a-b&b&c-b\a^3-b^3&b^3&c^3-b^3end{vmatrix}\&=begin{vmatrix}c-b&a-b\c^3-b^3&a^3-b^3end{vmatrix}\&=(c-b)(a-b)begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}\&=(c-b)(a-b)[(a^2+ab)-(c^2+cb)]\end{align}$$
Where did I go wrong?
linear-algebra matrices determinant
$endgroup$
add a comment |
$begingroup$
Prove that$$begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}=(b-a)(c-b)(c-a)(a+b+c)$$
My attempt:
$$begin{align}begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}&=begin{vmatrix}0&1&0\a-b&b&c-b\a^3-b^3&b^3&c^3-b^3end{vmatrix}\&=begin{vmatrix}c-b&a-b\c^3-b^3&a^3-b^3end{vmatrix}\&=(c-b)(a-b)begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}\&=(c-b)(a-b)[(a^2+ab)-(c^2+cb)]\end{align}$$
Where did I go wrong?
linear-algebra matrices determinant
$endgroup$
1
$begingroup$
check out the more general vandermonde determinant that might be useful.
$endgroup$
– Bijayan Ray
Mar 16 at 9:05
$begingroup$
try manually finding det through the 1st row, then its 8th grade algebra technique.
$endgroup$
– MotherLand
Mar 16 at 9:20
add a comment |
$begingroup$
Prove that$$begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}=(b-a)(c-b)(c-a)(a+b+c)$$
My attempt:
$$begin{align}begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}&=begin{vmatrix}0&1&0\a-b&b&c-b\a^3-b^3&b^3&c^3-b^3end{vmatrix}\&=begin{vmatrix}c-b&a-b\c^3-b^3&a^3-b^3end{vmatrix}\&=(c-b)(a-b)begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}\&=(c-b)(a-b)[(a^2+ab)-(c^2+cb)]\end{align}$$
Where did I go wrong?
linear-algebra matrices determinant
$endgroup$
Prove that$$begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}=(b-a)(c-b)(c-a)(a+b+c)$$
My attempt:
$$begin{align}begin{vmatrix}1&1&1\a&b&c\a^3&b^3&c^3end{vmatrix}&=begin{vmatrix}0&1&0\a-b&b&c-b\a^3-b^3&b^3&c^3-b^3end{vmatrix}\&=begin{vmatrix}c-b&a-b\c^3-b^3&a^3-b^3end{vmatrix}\&=(c-b)(a-b)begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}\&=(c-b)(a-b)[(a^2+ab)-(c^2+cb)]\end{align}$$
Where did I go wrong?
linear-algebra matrices determinant
linear-algebra matrices determinant
edited Mar 16 at 9:17
Rodrigo de Azevedo
13.2k41960
13.2k41960
asked Mar 16 at 8:36
DavidDavid
644
644
1
$begingroup$
check out the more general vandermonde determinant that might be useful.
$endgroup$
– Bijayan Ray
Mar 16 at 9:05
$begingroup$
try manually finding det through the 1st row, then its 8th grade algebra technique.
$endgroup$
– MotherLand
Mar 16 at 9:20
add a comment |
1
$begingroup$
check out the more general vandermonde determinant that might be useful.
$endgroup$
– Bijayan Ray
Mar 16 at 9:05
$begingroup$
try manually finding det through the 1st row, then its 8th grade algebra technique.
$endgroup$
– MotherLand
Mar 16 at 9:20
1
1
$begingroup$
check out the more general vandermonde determinant that might be useful.
$endgroup$
– Bijayan Ray
Mar 16 at 9:05
$begingroup$
check out the more general vandermonde determinant that might be useful.
$endgroup$
– Bijayan Ray
Mar 16 at 9:05
$begingroup$
try manually finding det through the 1st row, then its 8th grade algebra technique.
$endgroup$
– MotherLand
Mar 16 at 9:20
$begingroup$
try manually finding det through the 1st row, then its 8th grade algebra technique.
$endgroup$
– MotherLand
Mar 16 at 9:20
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Note that $(a^2+ab)-(c^2+cb)=(a-c)(a+c)+b(a-c)=(a-c)(a+b+c)$
$endgroup$
add a comment |
$begingroup$
Given a $4times 4$ Vandermonde matrix
$$
left[begin{matrix}
color{red}1&color{red}1&color{red}1&1\color{red}a&color{red}b&color{red}c&d\ a^2&b^2&c^2&color{blue}{d^2}\color{red}{a^3}&color{red}{b^3}&color{red}{c^3}&d^3
end{matrix}right],
$$ note that the desired determinant is the minor of $d^2$. Considering Laplace expansion, it appears as a minus(-) coefficient of $d^2$ in the Vandermonde determinant
$$begin{align*}
&color{red}{(b-a)(c-a)(c-b)}(d-a)(d-b)(d-c)\=&color{red}{(b-a)(c-a)(c-b)}(d^3-color{blue}{(a+b+c)}d^2+cdots).
end{align*}$$ Thus we obtain the desired determinant
$$color{red}{(b-a)(c-a)(c-b)}color{blue}{(a+b+c)}.
$$
$endgroup$
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
add a comment |
$begingroup$
$$begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}$$
$$=begin{vmatrix}1&1-1\c^2+cb+b^2&a^2+ab+b^2-(c^2+cb+b^2)end{vmatrix}$$
$$=begin{vmatrix}1&0\c^2+cb+b^2&a^2-c^2+b(a-c)end{vmatrix}$$
$$=a^2-c^2+b(a-c)$$
$$=(a-c)(a+c+b)$$
$endgroup$
add a comment |
$begingroup$
You can get it immediately:
$$sum_{cyc}(a^3c-a^3b)=(a+b+c)(a-b)(b-c)(c-a)$$
because for $a=b$ or $a=c$ or $b=c$ our determinant is equal to zero, which gives
$$K(a+b+c)(a-b)(b-c)(c-a)$$ and it's enough to check the coefficient before $a^3c$, which is $1$, which gives $K=1$.
$endgroup$
add a comment |
$begingroup$
Here is a geometrical interpretation of the formula :
$$(a-b)(b-c)(c-a)(a+b+c).tag{1}$$
I use the term "interpretation" because I have not written here a complete proof but rather an inductive way to obtain (1).
Indeed, if the presence of factors $(a-b), (b-c), (c-a)$ look very natural (the determinant is zero if at has 2 identical columns), this is apparently not the case for factor $(a+b+c)$.
Here is a context giving a natural interpretation to this factor.
Reminder (see Theorem in https://proofwiki.org/wiki/Area_of_Triangle_in_Determinant_Form ) : Let $A,B,C$ be $3$ points in the plane.
$$begin{vmatrix}1&1&1\x_A&x_B&x_C\y_A&y_B&y_Cend{vmatrix}=2 times area(ABC)$$
(being understood that, is $A,B,C$ are all different, this determinant is zero iff $A,B,C$ are aligned).
Here, we take points $A,B,C$ on the curve $Gamma$ with equation $y=x^3$. If they are distinct, they are aligned iff their abscissas are such that :
$$x_A+x_B+x_C=0$$
which is rather convincing when one looks at curve $Gamma$ (Fig. 1) :
Fig. 1 : the sum of abscissas of aligned points $A,B,C$ is $-1.5+0.5+1=0$.
Now, the proof : the abscissas of intersection points of :
$$begin{cases}y&=&x^3\y&=&ax+bend{cases} $$
verify
$$x^3-underbrace{0}_S x^2-ax-b=0.$$
The sum of roots $S$ (coefficient of $-x^2$ according to Viète's formulas) is thus zero.
$endgroup$
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
add a comment |
$begingroup$
1) By inspection : The determinant $= 0$ for $a=b$; $a=c$, and $b=c$ (Why?).
Hence $pm (c-b)$, $pm(a-b)$, and $pm (a-c)$ are factors.
You got $(c-b)(a-b)[a^2+ab -(c^2+cb)]$.
Hence $pm (a-c)$ is a factor of $[a^2+ab -(c^2+cb)]$.
$a^2-c^2+b(a-c)=$
$ (a-c)(a+c)+b(a-c)=$
$(a-c)(a+b+c).$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150198%2fproving-left-beginsmallmatrix111-abc-a3b3c3-endsmallmatrix-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $(a^2+ab)-(c^2+cb)=(a-c)(a+c)+b(a-c)=(a-c)(a+b+c)$
$endgroup$
add a comment |
$begingroup$
Note that $(a^2+ab)-(c^2+cb)=(a-c)(a+c)+b(a-c)=(a-c)(a+b+c)$
$endgroup$
add a comment |
$begingroup$
Note that $(a^2+ab)-(c^2+cb)=(a-c)(a+c)+b(a-c)=(a-c)(a+b+c)$
$endgroup$
Note that $(a^2+ab)-(c^2+cb)=(a-c)(a+c)+b(a-c)=(a-c)(a+b+c)$
answered Mar 16 at 9:11
att eplatt epl
27012
27012
add a comment |
add a comment |
$begingroup$
Given a $4times 4$ Vandermonde matrix
$$
left[begin{matrix}
color{red}1&color{red}1&color{red}1&1\color{red}a&color{red}b&color{red}c&d\ a^2&b^2&c^2&color{blue}{d^2}\color{red}{a^3}&color{red}{b^3}&color{red}{c^3}&d^3
end{matrix}right],
$$ note that the desired determinant is the minor of $d^2$. Considering Laplace expansion, it appears as a minus(-) coefficient of $d^2$ in the Vandermonde determinant
$$begin{align*}
&color{red}{(b-a)(c-a)(c-b)}(d-a)(d-b)(d-c)\=&color{red}{(b-a)(c-a)(c-b)}(d^3-color{blue}{(a+b+c)}d^2+cdots).
end{align*}$$ Thus we obtain the desired determinant
$$color{red}{(b-a)(c-a)(c-b)}color{blue}{(a+b+c)}.
$$
$endgroup$
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
add a comment |
$begingroup$
Given a $4times 4$ Vandermonde matrix
$$
left[begin{matrix}
color{red}1&color{red}1&color{red}1&1\color{red}a&color{red}b&color{red}c&d\ a^2&b^2&c^2&color{blue}{d^2}\color{red}{a^3}&color{red}{b^3}&color{red}{c^3}&d^3
end{matrix}right],
$$ note that the desired determinant is the minor of $d^2$. Considering Laplace expansion, it appears as a minus(-) coefficient of $d^2$ in the Vandermonde determinant
$$begin{align*}
&color{red}{(b-a)(c-a)(c-b)}(d-a)(d-b)(d-c)\=&color{red}{(b-a)(c-a)(c-b)}(d^3-color{blue}{(a+b+c)}d^2+cdots).
end{align*}$$ Thus we obtain the desired determinant
$$color{red}{(b-a)(c-a)(c-b)}color{blue}{(a+b+c)}.
$$
$endgroup$
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
add a comment |
$begingroup$
Given a $4times 4$ Vandermonde matrix
$$
left[begin{matrix}
color{red}1&color{red}1&color{red}1&1\color{red}a&color{red}b&color{red}c&d\ a^2&b^2&c^2&color{blue}{d^2}\color{red}{a^3}&color{red}{b^3}&color{red}{c^3}&d^3
end{matrix}right],
$$ note that the desired determinant is the minor of $d^2$. Considering Laplace expansion, it appears as a minus(-) coefficient of $d^2$ in the Vandermonde determinant
$$begin{align*}
&color{red}{(b-a)(c-a)(c-b)}(d-a)(d-b)(d-c)\=&color{red}{(b-a)(c-a)(c-b)}(d^3-color{blue}{(a+b+c)}d^2+cdots).
end{align*}$$ Thus we obtain the desired determinant
$$color{red}{(b-a)(c-a)(c-b)}color{blue}{(a+b+c)}.
$$
$endgroup$
Given a $4times 4$ Vandermonde matrix
$$
left[begin{matrix}
color{red}1&color{red}1&color{red}1&1\color{red}a&color{red}b&color{red}c&d\ a^2&b^2&c^2&color{blue}{d^2}\color{red}{a^3}&color{red}{b^3}&color{red}{c^3}&d^3
end{matrix}right],
$$ note that the desired determinant is the minor of $d^2$. Considering Laplace expansion, it appears as a minus(-) coefficient of $d^2$ in the Vandermonde determinant
$$begin{align*}
&color{red}{(b-a)(c-a)(c-b)}(d-a)(d-b)(d-c)\=&color{red}{(b-a)(c-a)(c-b)}(d^3-color{blue}{(a+b+c)}d^2+cdots).
end{align*}$$ Thus we obtain the desired determinant
$$color{red}{(b-a)(c-a)(c-b)}color{blue}{(a+b+c)}.
$$
edited Mar 16 at 9:53
answered Mar 16 at 9:47
SongSong
18.5k21651
18.5k21651
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
add a comment |
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
[+1] very interesting.
$endgroup$
– Jean Marie
Mar 16 at 23:50
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
$begingroup$
I just gave another way to consider this formula.
$endgroup$
– Jean Marie
Mar 17 at 13:34
add a comment |
$begingroup$
$$begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}$$
$$=begin{vmatrix}1&1-1\c^2+cb+b^2&a^2+ab+b^2-(c^2+cb+b^2)end{vmatrix}$$
$$=begin{vmatrix}1&0\c^2+cb+b^2&a^2-c^2+b(a-c)end{vmatrix}$$
$$=a^2-c^2+b(a-c)$$
$$=(a-c)(a+c+b)$$
$endgroup$
add a comment |
$begingroup$
$$begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}$$
$$=begin{vmatrix}1&1-1\c^2+cb+b^2&a^2+ab+b^2-(c^2+cb+b^2)end{vmatrix}$$
$$=begin{vmatrix}1&0\c^2+cb+b^2&a^2-c^2+b(a-c)end{vmatrix}$$
$$=a^2-c^2+b(a-c)$$
$$=(a-c)(a+c+b)$$
$endgroup$
add a comment |
$begingroup$
$$begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}$$
$$=begin{vmatrix}1&1-1\c^2+cb+b^2&a^2+ab+b^2-(c^2+cb+b^2)end{vmatrix}$$
$$=begin{vmatrix}1&0\c^2+cb+b^2&a^2-c^2+b(a-c)end{vmatrix}$$
$$=a^2-c^2+b(a-c)$$
$$=(a-c)(a+c+b)$$
$endgroup$
$$begin{vmatrix}1&1\c^2+cb+b^2&a^2+ab+b^2end{vmatrix}$$
$$=begin{vmatrix}1&1-1\c^2+cb+b^2&a^2+ab+b^2-(c^2+cb+b^2)end{vmatrix}$$
$$=begin{vmatrix}1&0\c^2+cb+b^2&a^2-c^2+b(a-c)end{vmatrix}$$
$$=a^2-c^2+b(a-c)$$
$$=(a-c)(a+c+b)$$
answered Mar 16 at 8:38
lab bhattacharjeelab bhattacharjee
228k15158278
228k15158278
add a comment |
add a comment |
$begingroup$
You can get it immediately:
$$sum_{cyc}(a^3c-a^3b)=(a+b+c)(a-b)(b-c)(c-a)$$
because for $a=b$ or $a=c$ or $b=c$ our determinant is equal to zero, which gives
$$K(a+b+c)(a-b)(b-c)(c-a)$$ and it's enough to check the coefficient before $a^3c$, which is $1$, which gives $K=1$.
$endgroup$
add a comment |
$begingroup$
You can get it immediately:
$$sum_{cyc}(a^3c-a^3b)=(a+b+c)(a-b)(b-c)(c-a)$$
because for $a=b$ or $a=c$ or $b=c$ our determinant is equal to zero, which gives
$$K(a+b+c)(a-b)(b-c)(c-a)$$ and it's enough to check the coefficient before $a^3c$, which is $1$, which gives $K=1$.
$endgroup$
add a comment |
$begingroup$
You can get it immediately:
$$sum_{cyc}(a^3c-a^3b)=(a+b+c)(a-b)(b-c)(c-a)$$
because for $a=b$ or $a=c$ or $b=c$ our determinant is equal to zero, which gives
$$K(a+b+c)(a-b)(b-c)(c-a)$$ and it's enough to check the coefficient before $a^3c$, which is $1$, which gives $K=1$.
$endgroup$
You can get it immediately:
$$sum_{cyc}(a^3c-a^3b)=(a+b+c)(a-b)(b-c)(c-a)$$
because for $a=b$ or $a=c$ or $b=c$ our determinant is equal to zero, which gives
$$K(a+b+c)(a-b)(b-c)(c-a)$$ and it's enough to check the coefficient before $a^3c$, which is $1$, which gives $K=1$.
answered Mar 16 at 8:45
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
$begingroup$
Here is a geometrical interpretation of the formula :
$$(a-b)(b-c)(c-a)(a+b+c).tag{1}$$
I use the term "interpretation" because I have not written here a complete proof but rather an inductive way to obtain (1).
Indeed, if the presence of factors $(a-b), (b-c), (c-a)$ look very natural (the determinant is zero if at has 2 identical columns), this is apparently not the case for factor $(a+b+c)$.
Here is a context giving a natural interpretation to this factor.
Reminder (see Theorem in https://proofwiki.org/wiki/Area_of_Triangle_in_Determinant_Form ) : Let $A,B,C$ be $3$ points in the plane.
$$begin{vmatrix}1&1&1\x_A&x_B&x_C\y_A&y_B&y_Cend{vmatrix}=2 times area(ABC)$$
(being understood that, is $A,B,C$ are all different, this determinant is zero iff $A,B,C$ are aligned).
Here, we take points $A,B,C$ on the curve $Gamma$ with equation $y=x^3$. If they are distinct, they are aligned iff their abscissas are such that :
$$x_A+x_B+x_C=0$$
which is rather convincing when one looks at curve $Gamma$ (Fig. 1) :
Fig. 1 : the sum of abscissas of aligned points $A,B,C$ is $-1.5+0.5+1=0$.
Now, the proof : the abscissas of intersection points of :
$$begin{cases}y&=&x^3\y&=&ax+bend{cases} $$
verify
$$x^3-underbrace{0}_S x^2-ax-b=0.$$
The sum of roots $S$ (coefficient of $-x^2$ according to Viète's formulas) is thus zero.
$endgroup$
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
add a comment |
$begingroup$
Here is a geometrical interpretation of the formula :
$$(a-b)(b-c)(c-a)(a+b+c).tag{1}$$
I use the term "interpretation" because I have not written here a complete proof but rather an inductive way to obtain (1).
Indeed, if the presence of factors $(a-b), (b-c), (c-a)$ look very natural (the determinant is zero if at has 2 identical columns), this is apparently not the case for factor $(a+b+c)$.
Here is a context giving a natural interpretation to this factor.
Reminder (see Theorem in https://proofwiki.org/wiki/Area_of_Triangle_in_Determinant_Form ) : Let $A,B,C$ be $3$ points in the plane.
$$begin{vmatrix}1&1&1\x_A&x_B&x_C\y_A&y_B&y_Cend{vmatrix}=2 times area(ABC)$$
(being understood that, is $A,B,C$ are all different, this determinant is zero iff $A,B,C$ are aligned).
Here, we take points $A,B,C$ on the curve $Gamma$ with equation $y=x^3$. If they are distinct, they are aligned iff their abscissas are such that :
$$x_A+x_B+x_C=0$$
which is rather convincing when one looks at curve $Gamma$ (Fig. 1) :
Fig. 1 : the sum of abscissas of aligned points $A,B,C$ is $-1.5+0.5+1=0$.
Now, the proof : the abscissas of intersection points of :
$$begin{cases}y&=&x^3\y&=&ax+bend{cases} $$
verify
$$x^3-underbrace{0}_S x^2-ax-b=0.$$
The sum of roots $S$ (coefficient of $-x^2$ according to Viète's formulas) is thus zero.
$endgroup$
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
add a comment |
$begingroup$
Here is a geometrical interpretation of the formula :
$$(a-b)(b-c)(c-a)(a+b+c).tag{1}$$
I use the term "interpretation" because I have not written here a complete proof but rather an inductive way to obtain (1).
Indeed, if the presence of factors $(a-b), (b-c), (c-a)$ look very natural (the determinant is zero if at has 2 identical columns), this is apparently not the case for factor $(a+b+c)$.
Here is a context giving a natural interpretation to this factor.
Reminder (see Theorem in https://proofwiki.org/wiki/Area_of_Triangle_in_Determinant_Form ) : Let $A,B,C$ be $3$ points in the plane.
$$begin{vmatrix}1&1&1\x_A&x_B&x_C\y_A&y_B&y_Cend{vmatrix}=2 times area(ABC)$$
(being understood that, is $A,B,C$ are all different, this determinant is zero iff $A,B,C$ are aligned).
Here, we take points $A,B,C$ on the curve $Gamma$ with equation $y=x^3$. If they are distinct, they are aligned iff their abscissas are such that :
$$x_A+x_B+x_C=0$$
which is rather convincing when one looks at curve $Gamma$ (Fig. 1) :
Fig. 1 : the sum of abscissas of aligned points $A,B,C$ is $-1.5+0.5+1=0$.
Now, the proof : the abscissas of intersection points of :
$$begin{cases}y&=&x^3\y&=&ax+bend{cases} $$
verify
$$x^3-underbrace{0}_S x^2-ax-b=0.$$
The sum of roots $S$ (coefficient of $-x^2$ according to Viète's formulas) is thus zero.
$endgroup$
Here is a geometrical interpretation of the formula :
$$(a-b)(b-c)(c-a)(a+b+c).tag{1}$$
I use the term "interpretation" because I have not written here a complete proof but rather an inductive way to obtain (1).
Indeed, if the presence of factors $(a-b), (b-c), (c-a)$ look very natural (the determinant is zero if at has 2 identical columns), this is apparently not the case for factor $(a+b+c)$.
Here is a context giving a natural interpretation to this factor.
Reminder (see Theorem in https://proofwiki.org/wiki/Area_of_Triangle_in_Determinant_Form ) : Let $A,B,C$ be $3$ points in the plane.
$$begin{vmatrix}1&1&1\x_A&x_B&x_C\y_A&y_B&y_Cend{vmatrix}=2 times area(ABC)$$
(being understood that, is $A,B,C$ are all different, this determinant is zero iff $A,B,C$ are aligned).
Here, we take points $A,B,C$ on the curve $Gamma$ with equation $y=x^3$. If they are distinct, they are aligned iff their abscissas are such that :
$$x_A+x_B+x_C=0$$
which is rather convincing when one looks at curve $Gamma$ (Fig. 1) :
Fig. 1 : the sum of abscissas of aligned points $A,B,C$ is $-1.5+0.5+1=0$.
Now, the proof : the abscissas of intersection points of :
$$begin{cases}y&=&x^3\y&=&ax+bend{cases} $$
verify
$$x^3-underbrace{0}_S x^2-ax-b=0.$$
The sum of roots $S$ (coefficient of $-x^2$ according to Viète's formulas) is thus zero.
edited Mar 17 at 13:33
answered Mar 17 at 10:55
Jean MarieJean Marie
31k42255
31k42255
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
add a comment |
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
$begingroup$
Wow. Thank you for your comment and [+1] for the unexpected geometric interpretation of the term $a+b+c$!
$endgroup$
– Song
Mar 17 at 13:45
add a comment |
$begingroup$
1) By inspection : The determinant $= 0$ for $a=b$; $a=c$, and $b=c$ (Why?).
Hence $pm (c-b)$, $pm(a-b)$, and $pm (a-c)$ are factors.
You got $(c-b)(a-b)[a^2+ab -(c^2+cb)]$.
Hence $pm (a-c)$ is a factor of $[a^2+ab -(c^2+cb)]$.
$a^2-c^2+b(a-c)=$
$ (a-c)(a+c)+b(a-c)=$
$(a-c)(a+b+c).$
$endgroup$
add a comment |
$begingroup$
1) By inspection : The determinant $= 0$ for $a=b$; $a=c$, and $b=c$ (Why?).
Hence $pm (c-b)$, $pm(a-b)$, and $pm (a-c)$ are factors.
You got $(c-b)(a-b)[a^2+ab -(c^2+cb)]$.
Hence $pm (a-c)$ is a factor of $[a^2+ab -(c^2+cb)]$.
$a^2-c^2+b(a-c)=$
$ (a-c)(a+c)+b(a-c)=$
$(a-c)(a+b+c).$
$endgroup$
add a comment |
$begingroup$
1) By inspection : The determinant $= 0$ for $a=b$; $a=c$, and $b=c$ (Why?).
Hence $pm (c-b)$, $pm(a-b)$, and $pm (a-c)$ are factors.
You got $(c-b)(a-b)[a^2+ab -(c^2+cb)]$.
Hence $pm (a-c)$ is a factor of $[a^2+ab -(c^2+cb)]$.
$a^2-c^2+b(a-c)=$
$ (a-c)(a+c)+b(a-c)=$
$(a-c)(a+b+c).$
$endgroup$
1) By inspection : The determinant $= 0$ for $a=b$; $a=c$, and $b=c$ (Why?).
Hence $pm (c-b)$, $pm(a-b)$, and $pm (a-c)$ are factors.
You got $(c-b)(a-b)[a^2+ab -(c^2+cb)]$.
Hence $pm (a-c)$ is a factor of $[a^2+ab -(c^2+cb)]$.
$a^2-c^2+b(a-c)=$
$ (a-c)(a+c)+b(a-c)=$
$(a-c)(a+b+c).$
answered Mar 16 at 10:02
Peter SzilasPeter Szilas
11.6k2822
11.6k2822
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150198%2fproving-left-beginsmallmatrix111-abc-a3b3c3-endsmallmatrix-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
check out the more general vandermonde determinant that might be useful.
$endgroup$
– Bijayan Ray
Mar 16 at 9:05
$begingroup$
try manually finding det through the 1st row, then its 8th grade algebra technique.
$endgroup$
– MotherLand
Mar 16 at 9:20