What is the value of $lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1}$? The Next CEO...
Failed to fetch jessie backports repository
How can I quit an app using Terminal?
How to get regions to plot as graphics
How to write papers efficiently when English isn't my first language?
Can a caster that cast Polymorph on themselves stop concentrating at any point even if their Int is low?
When Does an Atlas Uniquely Define a Manifold?
How to start emacs in "nothing" mode (`fundamental-mode`)
How do scammers retract money, while you can’t?
Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?
What makes a siege story/plot interesting?
Science fiction (dystopian) short story set after WWIII
Are there languages with no euphemisms?
Term for the "extreme-extension" version of a straw man fallacy?
Is it my responsibility to learn a new technology in my own time my employer wants to implement?
Robert Sheckley short story about vacation spots being overwhelmed
When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?
How to safely derail a train during transit?
Does it take more energy to get to Venus or to Mars?
How long to clear the 'suck zone' of a turbofan after start is initiated?
How to use tikz in fbox?
How to Reset Passwords on Multiple Websites Easily?
How easy is it to start Magic from scratch?
Increase performance creating Mandelbrot set in python
Can I equip Skullclamp on a creature I am sacrificing?
What is the value of $lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1}$?
The Next CEO of Stack OverflowFinding the limit of $frac{sqrt{x}}{sqrt{x}+sinsqrt{x}}$Calculate $lim_{x to infty} x - sqrt{x^2 + 2x}$ without derivationsFind $lim_{xto-infty}frac{x}{sqrt{x^2+2}}$Find $lim_{nto infty}sqrt[n]{frac{sum_{i=1}^p a_i^n}{p}}$Find the value of : $lim_{xtoinfty}frac{sqrt{x-1} - sqrt{x-2}}{sqrt{x-2} - sqrt{x-3}}$Find the limit $lim_{t to 9} frac{3-sqrt{t}}{9-t}$$lim_{n to infty} frac{sqrt{1} + sqrt{2} + … + sqrt{n}}{nsqrt{n}}$Find: $lim_{xtoinfty} frac{sqrt{x}}{sqrt{x+sqrt{x+sqrt{x}}}}.$How to solve $lim_{xto1}=frac{x^2+x-2}{1-sqrt{x}}$?finding value of $lim_{nrightarrow infty}sqrt[n]{frac{(27)^n(n!)^3}{(3n)!}}$
$begingroup$
$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt{4x-4}=2sqrt{x-1}$
$displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$
So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?
limits
$endgroup$
add a comment |
$begingroup$
$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt{4x-4}=2sqrt{x-1}$
$displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$
So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?
limits
$endgroup$
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
add a comment |
$begingroup$
$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt{4x-4}=2sqrt{x-1}$
$displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$
So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?
limits
$endgroup$
$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$
I have done these steps to find the answer:
$x^2-1=(x+1)(x-1)$
$sqrt{4x-4}=2sqrt{x-1}$
$displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$
So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?
limits
limits
edited Mar 16 at 11:36
egreg
185k1486206
185k1486206
asked Mar 16 at 8:01
AquamanAquaman
133
133
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
add a comment |
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$
$endgroup$
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
I assume:
$$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$
$endgroup$
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$
$endgroup$
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$
$endgroup$
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$
$endgroup$
The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.
$$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$
This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf
After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$
edited Mar 17 at 6:13
answered Mar 16 at 8:04
Paras KhoslaParas Khosla
2,691423
2,691423
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
Are you sure? I am not!
$endgroup$
– Aquaman
Mar 16 at 8:04
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
$endgroup$
– Aquaman
Mar 16 at 8:06
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
I think that we have to simplify the function then solve it!
$endgroup$
– Aquaman
Mar 16 at 8:07
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
$endgroup$
– Aquaman
Mar 16 at 8:12
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
$begingroup$
Ok @Aquaman I've edited my answer too. Cheers:- ))
$endgroup$
– Paras Khosla
Mar 16 at 8:14
add a comment |
$begingroup$
I assume:
$$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$
$endgroup$
add a comment |
$begingroup$
I assume:
$$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$
$endgroup$
add a comment |
$begingroup$
I assume:
$$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$
$endgroup$
I assume:
$$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$
answered Mar 16 at 8:08
farruhotafarruhota
21.6k2842
21.6k2842
add a comment |
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
$$
$endgroup$
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
$$
$endgroup$
add a comment |
$begingroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
$$
$endgroup$
Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
$$
lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
$$
answered Mar 16 at 11:39
egregegreg
185k1486206
185k1486206
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04
$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05
$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09