What is the value of $lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1}$? The Next CEO...

Failed to fetch jessie backports repository

How can I quit an app using Terminal?

How to get regions to plot as graphics

How to write papers efficiently when English isn't my first language?

Can a caster that cast Polymorph on themselves stop concentrating at any point even if their Int is low?

When Does an Atlas Uniquely Define a Manifold?

How to start emacs in "nothing" mode (`fundamental-mode`)

How do scammers retract money, while you can’t?

Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?

What makes a siege story/plot interesting?

Science fiction (dystopian) short story set after WWIII

Are there languages with no euphemisms?

Term for the "extreme-extension" version of a straw man fallacy?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Robert Sheckley short story about vacation spots being overwhelmed

When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?

How to safely derail a train during transit?

Does it take more energy to get to Venus or to Mars?

How long to clear the 'suck zone' of a turbofan after start is initiated?

How to use tikz in fbox?

How to Reset Passwords on Multiple Websites Easily?

How easy is it to start Magic from scratch?

Increase performance creating Mandelbrot set in python

Can I equip Skullclamp on a creature I am sacrificing?



What is the value of $lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1}$?



The Next CEO of Stack OverflowFinding the limit of $frac{sqrt{x}}{sqrt{x}+sinsqrt{x}}$Calculate $lim_{x to infty} x - sqrt{x^2 + 2x}$ without derivationsFind $lim_{xto-infty}frac{x}{sqrt{x^2+2}}$Find $lim_{nto infty}sqrt[n]{frac{sum_{i=1}^p a_i^n}{p}}$Find the value of : $lim_{xtoinfty}frac{sqrt{x-1} - sqrt{x-2}}{sqrt{x-2} - sqrt{x-3}}$Find the limit $lim_{t to 9} frac{3-sqrt{t}}{9-t}$$lim_{n to infty} frac{sqrt{1} + sqrt{2} + … + sqrt{n}}{nsqrt{n}}$Find: $lim_{xtoinfty} frac{sqrt{x}}{sqrt{x+sqrt{x+sqrt{x}}}}.$How to solve $lim_{xto1}=frac{x^2+x-2}{1-sqrt{x}}$?finding value of $lim_{nrightarrow infty}sqrt[n]{frac{(27)^n(n!)^3}{(3n)!}}$












1












$begingroup$


$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$



I have done these steps to find the answer:




  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt{4x-4}=2sqrt{x-1}$


  3. $displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$



So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09
















1












$begingroup$


$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$



I have done these steps to find the answer:




  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt{4x-4}=2sqrt{x-1}$


  3. $displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$



So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?










share|cite|improve this question











$endgroup$












  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09














1












1








1





$begingroup$


$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$



I have done these steps to find the answer:




  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt{4x-4}=2sqrt{x-1}$


  3. $displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$



So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?










share|cite|improve this question











$endgroup$




$$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = ?$$



I have done these steps to find the answer:




  1. $x^2-1=(x+1)(x-1)$


  2. $sqrt{4x-4}=2sqrt{x-1}$


  3. $displaystylelim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{ (x+1)(x-1) }+x-1}{ 2sqrt{x-1} + (x+1)(x-1) }$



So how do I remove what causes the hole function not to become $frac{0}{0}$ and solve the limit?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 16 at 11:36









egreg

185k1486206




185k1486206










asked Mar 16 at 8:01









AquamanAquaman

133




133












  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09


















  • $begingroup$
    The numerator tends to $2$, the denominator to $0$.
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:04










  • $begingroup$
    Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
    $endgroup$
    – Lord Shark the Unknown
    Mar 16 at 8:05










  • $begingroup$
    Yes I have edited it now!
    $endgroup$
    – Aquaman
    Mar 16 at 8:09
















$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04




$begingroup$
The numerator tends to $2$, the denominator to $0$.
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:04












$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05




$begingroup$
Did you mean $$lim_{x to 1^+} frac{sqrt{x^2-1}+x-1}{ sqrt{4x-4}+x^2-1} ?$$
$endgroup$
– Lord Shark the Unknown
Mar 16 at 8:05












$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09




$begingroup$
Yes I have edited it now!
$endgroup$
– Aquaman
Mar 16 at 8:09










3 Answers
3






active

oldest

votes


















2












$begingroup$

The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



$$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$



This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf





After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Are you sure? I am not!
    $endgroup$
    – Aquaman
    Mar 16 at 8:04










  • $begingroup$
    I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
    $endgroup$
    – Aquaman
    Mar 16 at 8:06










  • $begingroup$
    I think that we have to simplify the function then solve it!
    $endgroup$
    – Aquaman
    Mar 16 at 8:07










  • $begingroup$
    AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
    $endgroup$
    – Aquaman
    Mar 16 at 8:12










  • $begingroup$
    Ok @Aquaman I've edited my answer too. Cheers:- ))
    $endgroup$
    – Paras Khosla
    Mar 16 at 8:14



















2












$begingroup$

I assume:
$$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
    $$
    lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
    lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
    $$






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf





      After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14
















      2












      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf





      After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14














      2












      2








      2





      $begingroup$

      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf





      After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$






      share|cite|improve this answer











      $endgroup$



      The expression is not of the form $0/0$ notice carefully the denominator goes to $0$ where the numerator is finite.



      $$lim_{xto 1^+}dfrac{sqrt{x^2-1}+x+1}{sqrt{4x-4}+x^2-1}to infty$$



      This graph confirms the result: https://www.desmos.com/calculator/ejj9xiyjcf





      After the OP's edit: $$dfrac{sqrt{x^2-1}+x-1}{2sqrt{x-1}+x^2-1}=dfrac{sqrt{x-1}}{sqrt{x-1}}cdotdfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)} \ implies lim_{xto 1^+}dfrac{sqrt{x+1}+sqrt{x-1}}{2+(x-1)^{3/2}(x+1)}to dfrac{sqrt{2}}{2}$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Mar 17 at 6:13

























      answered Mar 16 at 8:04









      Paras KhoslaParas Khosla

      2,691423




      2,691423












      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14


















      • $begingroup$
        Are you sure? I am not!
        $endgroup$
        – Aquaman
        Mar 16 at 8:04










      • $begingroup$
        I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
        $endgroup$
        – Aquaman
        Mar 16 at 8:06










      • $begingroup$
        I think that we have to simplify the function then solve it!
        $endgroup$
        – Aquaman
        Mar 16 at 8:07










      • $begingroup$
        AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
        $endgroup$
        – Aquaman
        Mar 16 at 8:12










      • $begingroup$
        Ok @Aquaman I've edited my answer too. Cheers:- ))
        $endgroup$
        – Paras Khosla
        Mar 16 at 8:14
















      $begingroup$
      Are you sure? I am not!
      $endgroup$
      – Aquaman
      Mar 16 at 8:04




      $begingroup$
      Are you sure? I am not!
      $endgroup$
      – Aquaman
      Mar 16 at 8:04












      $begingroup$
      I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
      $endgroup$
      – Aquaman
      Mar 16 at 8:06




      $begingroup$
      I think that Zeros are limit kinds of zero! I mean they are $0^+$ & $0^-$
      $endgroup$
      – Aquaman
      Mar 16 at 8:06












      $begingroup$
      I think that we have to simplify the function then solve it!
      $endgroup$
      – Aquaman
      Mar 16 at 8:07




      $begingroup$
      I think that we have to simplify the function then solve it!
      $endgroup$
      – Aquaman
      Mar 16 at 8:07












      $begingroup$
      AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
      $endgroup$
      – Aquaman
      Mar 16 at 8:12




      $begingroup$
      AFTER REMOVING + and replacing - it will change . Sorry ive edited the question!
      $endgroup$
      – Aquaman
      Mar 16 at 8:12












      $begingroup$
      Ok @Aquaman I've edited my answer too. Cheers:- ))
      $endgroup$
      – Paras Khosla
      Mar 16 at 8:14




      $begingroup$
      Ok @Aquaman I've edited my answer too. Cheers:- ))
      $endgroup$
      – Paras Khosla
      Mar 16 at 8:14











      2












      $begingroup$

      I assume:
      $$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
      lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        I assume:
        $$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
        lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          I assume:
          $$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
          lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$






          share|cite|improve this answer









          $endgroup$



          I assume:
          $$lim_{x to 1^+} frac{sqrt{x^2-1}+xcolor{red}-1}{ sqrt{4x-4}+x^2-1} = lim_{x to 1^+} frac{sqrt{x-1}cdot sqrt{x+1}+(sqrt{x-1})^2}{ sqrt{4x-4}+(sqrt{x-1})^2(x+1)} =\
          lim_{x to 1^+} frac{sqrt{x-1}cdot (sqrt{x+1}+sqrt{x-1})}{sqrt{x-1}cdot (2+(sqrt{x-1})(x+1))} =frac{sqrt{2}}{2}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 16 at 8:08









          farruhotafarruhota

          21.6k2842




          21.6k2842























              0












              $begingroup$

              Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
              $$
              lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
              lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
              $$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                $$
                lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
                lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
                $$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                  $$
                  lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
                  lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Set $x-1=t^2$, which you can because the limit is for $xto1^+$. Then the limit becomes
                  $$
                  lim_{tto0^+}frac{tsqrt{t^2+2}+t^2}{2t+t^2(t^2+2)}=
                  lim_{tto0^+}frac{sqrt{t^2+2}+t}{2+t(t^2+2)}
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 16 at 11:39









                  egregegreg

                  185k1486206




                  185k1486206






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150178%2fwhat-is-the-value-of-lim-x-to-1-frac-sqrtx2-1x-1-sqrt4x-4x2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Nidaros erkebispedøme

                      Birsay

                      Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...