Contradiction proof for inequality of P and NP? Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Proof for P-complete is not closed under intersectionProof of sum of powerset?Contradiction between best-case running time of insertion sort and $nlog n$ lower bound?bounded length CoNP proofLogarithmic Randomness is Necessary for PCP TheoremTrouble seeing the contradiction in diagonalization proofIs it always possible to have one part of the reduction?Is this language NP Hard?Testing algorithm for a modified sieve of EratosthenesFinding a complexity by solving inequality

How can I wire a 9-position switch so that each position turns on one more LED than the one before?

"Rubric" as meaning "signature" or "personal mark" -- is this accepted usage?

How to get even lighting when using flash for group photos near wall?

What's parked in Mil Moscow helicopter plant?

What is the best way to deal with NPC-NPC combat?

What is the least dense liquid under normal conditions?

Raising a bilingual kid. When should we introduce the majority language?

Holes in ElementMesh with ToElementMesh of ImplicitRegion

"My boss was furious with me and I have been fired" vs. "My boss was furious with me and I was fired"

Why does the Cisco show run command not show the full version, while the show version command does?

Could Neutrino technically as side-effect, incentivize centralization of the bitcoin network?

Is there any hidden 'W' sound after 'comment' in : Comment est-elle?

With indentation set to `0em`, when using a line break, there is still an indentation of a size of a space

Flattening the sub-lists

Are all CP/M-80 implementations binary compatible?

Implementing 3DES algorithm in Java: is my code secure?

Why isn't everyone flabbergasted about Bran's "gift"?

All ASCII characters with a given bit count

Has a Nobel Peace laureate ever been accused of war crimes?

How would I use different systems of magic when they are capable of the same effects?

What’s with the clanks in Endgame?

How to avoid introduction cliches

Check if a string is entirely made of the same substring

Does Feeblemind produce an ongoing magical effect that can be dispelled?



Contradiction proof for inequality of P and NP?



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Proof for P-complete is not closed under intersectionProof of sum of powerset?Contradiction between best-case running time of insertion sort and $nlog n$ lower bound?bounded length CoNP proofLogarithmic Randomness is Necessary for PCP TheoremTrouble seeing the contradiction in diagonalization proofIs it always possible to have one part of the reduction?Is this language NP Hard?Testing algorithm for a modified sieve of EratosthenesFinding a complexity by solving inequality










1












$begingroup$


I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




Is there something wrong with my proof? I was struggling for hours before asking this, though!










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




    We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




    Is there something wrong with my proof? I was struggling for hours before asking this, though!










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




      We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




      Is there something wrong with my proof? I was struggling for hours before asking this, though!










      share|cite|improve this question









      $endgroup$




      I'm trying to argue that N is not equal NP using hierarchy theorems. This is my argument, but when I showed it to our teacher and after deduction, he said that this is problematic where I can't find a compelling reason to accept.




      We start off by assuming that $P=NP$. Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$. As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$. On the contrary, the time hierarchy theorem states that there should be a language $A in TIME(n^k+1)$, that's not in $TIME(n^k)$. This would lead us to conclude that $A$ is in $P$, while not in $NP$, which is a contradiction to our first assumption. So, we came to the conclusion that $P neq NP$.




      Is there something wrong with my proof? I was struggling for hours before asking this, though!







      complexity-theory time-complexity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      inverted_indexinverted_index

      1384




      1384




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$


          Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




          Sure.




          As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




          No. Polynomial time reductions aren't free. We can say it takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



          And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$


            Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




            Sure.




            As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




            No. Polynomial time reductions aren't free. We can say it takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



            And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






            share|cite|improve this answer











            $endgroup$

















              5












              $begingroup$


              Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




              Sure.




              As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




              No. Polynomial time reductions aren't free. We can say it takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



              And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






              share|cite|improve this answer











              $endgroup$















                5












                5








                5





                $begingroup$


                Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




                Sure.




                As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




                No. Polynomial time reductions aren't free. We can say it takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



                And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.






                share|cite|improve this answer











                $endgroup$




                Then it yields that $SAT in P$ which itself then follows that $SAT in TIME(n^k)$.




                Sure.




                As stands, we are able to do reduce every language in $NP$ to $SAT$. Therefore, $NP subseteq TIME(n^k)$.




                No. Polynomial time reductions aren't free. We can say it takes $O(n^r(L))$ time to reduce language $L$ to $SAT$, where $r(L)$ is the exponent in the polynomial time reduction used. This is where your argument falls apart. There is no finite $k$ such that for all $L in NP$ we have $r(L) < k$. At least this does not follow from $P = NP$ and would be a much stronger statement.



                And this stronger statement does indeed conflict with the time hierarchy theorem, which tells us that $P$ can not collapse into $TIME(n^k)$, let alone all of $NP$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 42 mins ago

























                answered 1 hour ago









                orlporlp

                6,1351826




                6,1351826



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108496%2fcontradiction-proof-for-inequality-of-p-and-np%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Nidaros erkebispedøme

                    Birsay

                    Where did Arya get these scars? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why did Arya refuse to end it?Has the pronunciation of Arya Stark's name changed?Has Arya forgiven people?Why did Arya Stark lose her vision?Why can Arya still use the faces?Has the Narrow Sea become narrower?Does Arya Stark know how to make poisons outside of the House of Black and White?Why did Nymeria leave Arya?Why did Arya not kill the Lannister soldiers she encountered in the Riverlands?What is the current canonical age of Sansa, Bran and Arya Stark?