Normal Operator || T^2|| = ||T||^2 Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)If $S$ and $T$ are commuting, normal operators, then $ST$ is normal$T^2=I$ implies that $T$ is a normal operatorProving an operator is Self-adjoint using the Spectral TheoremEigenvalues of adjoint operator [General Case]diagonalizability implies existence of an inner product wrt an operator is normalNormal operator over real inner product spaceNormal matrix over real inner product space with real eigenvalues is Hermitianpolar form of unitary operatorWe have a linear operator T. Show $T^2=Id$ implies $T=T^*$Some property of Normal Operator
Why does BitLocker not use RSA?
How to ask rejected full-time candidates to apply to teach individual courses?
false 'Security alert' from Google - every login generates mails from 'no-reply@accounts.google.com'
Can this water damage be explained by lack of gutters and grading issues?
What kind of equipment or other technology is necessary to photograph sprites (atmospheric phenomenon)
Has a Nobel Peace laureate ever been accused of war crimes?
Help Recreating a Table
Why do C and C++ allow the expression (int) + 4*5?
What is the evidence that custom checks in Northern Ireland are going to result in violence?
If gravity precedes the formation of a solar system, where did the mass come from that caused the gravity?
Why doesn't the university give past final exams' answers?
Unix AIX passing variable and arguments to expect and spawn
Does the Pact of the Blade warlock feature allow me to customize the properties of the pact weapon I create?
Weaponising the Grasp-at-a-Distance spell
Compiling and throwing simple dynamic exceptions at runtime for JVM
How to make an animal which can only breed for a certain number of generations?
“Since the train was delayed for more than an hour, passengers were given a full refund.” – Why is there no article before “passengers”?
Normal Operator || T^2|| = ||T||^2
Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?
Recursive calls to a function - why is the address of the parameter passed to it lowering with each call?
Can a Wizard take the Magic Initiate feat and select spells from the Wizard list?
Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?
What could prevent concentrated local exploration?
A journey... into the MIND
Normal Operator || T^2|| = ||T||^2
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)If $S$ and $T$ are commuting, normal operators, then $ST$ is normal$T^2=I$ implies that $T$ is a normal operatorProving an operator is Self-adjoint using the Spectral TheoremEigenvalues of adjoint operator [General Case]diagonalizability implies existence of an inner product wrt an operator is normalNormal operator over real inner product spaceNormal matrix over real inner product space with real eigenvalues is Hermitianpolar form of unitary operatorWe have a linear operator T. Show $T^2=Id$ implies $T=T^*$Some property of Normal Operator
$begingroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $fracTx$ and ||T$^2$|| = sup $fracT^2x$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $fracTx$ and ||T$^2$|| = sup $fracT^2x$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $fracTx$ and ||T$^2$|| = sup $fracT^2x$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
$endgroup$
Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.
How can we show ||T$^2$|| = ||T||$^2$?
By the definition of operator norm, it follows that ||T|| = sup $fracTx$ and ||T$^2$|| = sup $fracT^2x$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?
linear-algebra
linear-algebra
asked 1 hour ago
EricEric
798
798
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
1
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
1
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197793%2fnormal-operator-t2-t2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
1
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
1
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
add a comment |
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
1
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
1
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
add a comment |
$begingroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
$endgroup$
If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
=left<x,TT^*xright>=|T^*x|^2$, so $|Tx|=|T^*x|$ (and therefore
$|T|=|T^*|$).
Then (replacing $x$ by $Tx$)
$|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
$|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
=|T^2|$. But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
whenever $T$ is normal.
answered 51 mins ago
Lord Shark the UnknownLord Shark the Unknown
109k1163136
109k1163136
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
1
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
1
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
add a comment |
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
1
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
1
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
$endgroup$
– Eric
34 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
$begingroup$
(ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
$endgroup$
– Eric
33 mins ago
1
1
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
$begingroup$
By the definition: $|T|=sup_x|Tx|$. @Eric
$endgroup$
– Lord Shark the Unknown
33 mins ago
1
1
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
$begingroup$
@eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
$endgroup$
– Lord Shark the Unknown
31 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197793%2fnormal-operator-t2-t2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown