Inverse $Z$-transform $X (z) = log left( frac{z}{z-a} right)$How to perform Inverse Z transformInverse $z$...
What does "I’d sit this one out, Cap," imply or mean in the context?
Is there a problem with hiding "forgot password" until it's needed?
Was Spock the First Vulcan in Starfleet?
Opposite of a diet
Proof of work - lottery approach
Short story about space worker geeks who zone out by 'listening' to radiation from stars
Why are there no referendums in the US?
A Rare Riley Riddle
What is the best translation for "slot" in the context of multiplayer video games?
Is oxalic acid dihydrate considered a primary acid standard in analytical chemistry?
Integer addition + constant, is it a group?
Is expanding the research of a group into machine learning as a PhD student risky?
How do we know the LHC results are robust?
Sort a list by elements of another list
How to run a prison with the smallest amount of guards?
Tiptoe or tiphoof? Adjusting words to better fit fantasy races
Would a high gravity rocky planet be guaranteed to have an atmosphere?
Unreliable Magic - Is it worth it?
Hostile work environment after whistle-blowing on coworker and our boss. What do I do?
Is HostGator storing my password in plaintext?
Why escape if the_content isnt?
How to check is there any negative term in a large list?
Type int? vs type int
Method to test if a number is a perfect power?
Inverse $Z$-transform $X (z) = log left( frac{z}{z-a} right)$
How to perform Inverse Z transformInverse $z$ transform - contour integrationCan Inverse z Transform have more than one solution?Inverse Z-transform of a rational functionHow can I find the inverse Z-transform of $1/z$?Inverse Z transformInverse Z Transform with $2-z^{-2}$Simple Inverse Z-TransformPartial Fraction Expansion Methods for inverse z transforminverse z-transform of $frac{1}{(1-z^{-1})^{2}}$
$begingroup$
I need help to find the inverse $Z$-transform of the following function
$$X (z) = log left( frac{z}{z-a} right)$$
I get to the point
$$x[n] = frac{delta[n]}{n}+frac{epsilon[n]*a^n}{n}$$
But how do I find the value when $n = 0$?
z-transform
$endgroup$
add a comment |
$begingroup$
I need help to find the inverse $Z$-transform of the following function
$$X (z) = log left( frac{z}{z-a} right)$$
I get to the point
$$x[n] = frac{delta[n]}{n}+frac{epsilon[n]*a^n}{n}$$
But how do I find the value when $n = 0$?
z-transform
$endgroup$
$begingroup$
What is $epsilon[n]$?
$endgroup$
– Rodrigo de Azevedo
Mar 15 at 17:42
$begingroup$
Heavyside step function, I don't know if everyone is using epsilon but in my class we do:/
$endgroup$
– Oskar Lundin
Mar 15 at 17:49
add a comment |
$begingroup$
I need help to find the inverse $Z$-transform of the following function
$$X (z) = log left( frac{z}{z-a} right)$$
I get to the point
$$x[n] = frac{delta[n]}{n}+frac{epsilon[n]*a^n}{n}$$
But how do I find the value when $n = 0$?
z-transform
$endgroup$
I need help to find the inverse $Z$-transform of the following function
$$X (z) = log left( frac{z}{z-a} right)$$
I get to the point
$$x[n] = frac{delta[n]}{n}+frac{epsilon[n]*a^n}{n}$$
But how do I find the value when $n = 0$?
z-transform
z-transform
edited Mar 15 at 17:39
Rodrigo de Azevedo
13.2k41960
13.2k41960
asked Mar 15 at 16:24
Oskar LundinOskar Lundin
62
62
$begingroup$
What is $epsilon[n]$?
$endgroup$
– Rodrigo de Azevedo
Mar 15 at 17:42
$begingroup$
Heavyside step function, I don't know if everyone is using epsilon but in my class we do:/
$endgroup$
– Oskar Lundin
Mar 15 at 17:49
add a comment |
$begingroup$
What is $epsilon[n]$?
$endgroup$
– Rodrigo de Azevedo
Mar 15 at 17:42
$begingroup$
Heavyside step function, I don't know if everyone is using epsilon but in my class we do:/
$endgroup$
– Oskar Lundin
Mar 15 at 17:49
$begingroup$
What is $epsilon[n]$?
$endgroup$
– Rodrigo de Azevedo
Mar 15 at 17:42
$begingroup$
What is $epsilon[n]$?
$endgroup$
– Rodrigo de Azevedo
Mar 15 at 17:42
$begingroup$
Heavyside step function, I don't know if everyone is using epsilon but in my class we do:/
$endgroup$
– Oskar Lundin
Mar 15 at 17:49
$begingroup$
Heavyside step function, I don't know if everyone is using epsilon but in my class we do:/
$endgroup$
– Oskar Lundin
Mar 15 at 17:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using the Taylor series $log(1-x)=sum_{n=1}^infty-frac{x^n}n$, we have
$$log(z/(z-a))=-log(1-a/z)=sum_{n=1}^infty frac{(a/z)^n}n$$
for $left| frac{a}{z} right| < 1.$ Therefore, the inverse $z$-transform should be
$$
x[n] = begin{cases}frac1na^{n} & n>0 \ 0 & text{otherwise}end{cases}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149495%2finverse-z-transform-x-z-log-left-fraczz-a-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the Taylor series $log(1-x)=sum_{n=1}^infty-frac{x^n}n$, we have
$$log(z/(z-a))=-log(1-a/z)=sum_{n=1}^infty frac{(a/z)^n}n$$
for $left| frac{a}{z} right| < 1.$ Therefore, the inverse $z$-transform should be
$$
x[n] = begin{cases}frac1na^{n} & n>0 \ 0 & text{otherwise}end{cases}
$$
$endgroup$
add a comment |
$begingroup$
Using the Taylor series $log(1-x)=sum_{n=1}^infty-frac{x^n}n$, we have
$$log(z/(z-a))=-log(1-a/z)=sum_{n=1}^infty frac{(a/z)^n}n$$
for $left| frac{a}{z} right| < 1.$ Therefore, the inverse $z$-transform should be
$$
x[n] = begin{cases}frac1na^{n} & n>0 \ 0 & text{otherwise}end{cases}
$$
$endgroup$
add a comment |
$begingroup$
Using the Taylor series $log(1-x)=sum_{n=1}^infty-frac{x^n}n$, we have
$$log(z/(z-a))=-log(1-a/z)=sum_{n=1}^infty frac{(a/z)^n}n$$
for $left| frac{a}{z} right| < 1.$ Therefore, the inverse $z$-transform should be
$$
x[n] = begin{cases}frac1na^{n} & n>0 \ 0 & text{otherwise}end{cases}
$$
$endgroup$
Using the Taylor series $log(1-x)=sum_{n=1}^infty-frac{x^n}n$, we have
$$log(z/(z-a))=-log(1-a/z)=sum_{n=1}^infty frac{(a/z)^n}n$$
for $left| frac{a}{z} right| < 1.$ Therefore, the inverse $z$-transform should be
$$
x[n] = begin{cases}frac1na^{n} & n>0 \ 0 & text{otherwise}end{cases}
$$
edited Mar 15 at 18:32
answered Mar 15 at 16:46
Mike EarnestMike Earnest
25.9k22151
25.9k22151
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149495%2finverse-z-transform-x-z-log-left-fraczz-a-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $epsilon[n]$?
$endgroup$
– Rodrigo de Azevedo
Mar 15 at 17:42
$begingroup$
Heavyside step function, I don't know if everyone is using epsilon but in my class we do:/
$endgroup$
– Oskar Lundin
Mar 15 at 17:49