A problem in Probability theoryIf $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbbE(X^k+1)$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_Omega X(omega) P(domega)$ mean?Probability theory: Convergence
Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?
How to check is there any negative term in a large list?
Is this apparent Class Action settlement a spam message?
Why are there no referendums in the US?
Why Were Madagascar and New Zealand Discovered So Late?
Applicability of Single Responsibility Principle
Go Pregnant or Go Home
Flow chart document symbol
Is exact Kanji stroke length important?
Can the discrete variable be a negative number?
Short story about space worker geeks who zone out by 'listening' to radiation from stars
What happens if you roll doubles 3 times then land on "Go to jail?"
How does it work when somebody invests in my business?
What can we do to stop prior company from asking us questions?
Pole-zeros of a real-valued causal FIR system
How to safely derail a train during transit?
Method to test if a number is a perfect power?
How long to clear the 'suck zone' of a turbofan after start is initiated?
A Rare Riley Riddle
How do I rename a Linux host without needing to reboot for the rename to take effect?
How easy is it to start Magic from scratch?
How did Arya survive the stabbing?
Customer Requests (Sometimes) Drive Me Bonkers!
How do I extract a value from a time formatted value in excel?
A problem in Probability theory
If $G(x)=P[Xgeq x]$ then $Xgeq c$ is equivalent to $G(X)leq G(c)$ $P$-almost surelyTrying to establish an inequality on probabilityCan some probability triple give rise to any probability distribution?Expectation of $mathbbE(X^k+1)$Is PDF unique for a random variable $X$ in given probability space?Conditional expectation on different probability measureAverage of Random variables converges in probability.Range of a random variable is measurableIn probability theory what does the notation $int_Omega X(omega) P(domega)$ mean?Probability theory: Convergence
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
add a comment |
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago
add a comment |
$begingroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
$endgroup$
This is a problem in KaiLai Chung's A Course in Probability Theory.
Given a nonnegative random variable $X$ defined on $Omega$, if $mathbbE(X^2)=1$ and $mathbbE(X)geq a >0$, prove that $$mathbbP(Xgeq lambda a)geq (a-lambda a)^2$$
for $0leqlambda leq 1$.
Let $A=xin Omega:X(x)geq lambda a$, we get
$$int_A (X-lambda a)geq a-int_Alambda a -int_A^cX$$
and $$int_A (X^2-lambda^2 a^2)=1-int_Alambda^2a^2-int_A^cX^2$$
I want to contrast $int_A (X-lambda a)$ and $int_A (X^2-lambda^2 a^2)$, but I don't know how to do it, could anyone gives me some hints?
probability integration lp-spaces
probability integration lp-spaces
asked 3 hours ago
Xin FuXin Fu
1568
1568
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago
add a comment |
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
$begingroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
$endgroup$
You have
$$
alemathbb E(X) = int_Xlelambda aX,dP + int_Xgelambda aX,dP,le,lambda a + int_Xgelambda aX,dP.
$$
Hence,
$$
a(1-lambda),le,int_Xgelambda aX,dP,le,left(int_Xgelambda aX^2,dPright)^1/2cdot P(Xgelambda a)^1/2,le,P(Xgelambda a)^1/2.
$$
Square this and you're done.
answered 2 hours ago
amsmathamsmath
3,364419
3,364419
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
$begingroup$
Thank you very much!
$endgroup$
– Xin Fu
2 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165418%2fa-problem-in-probability-theory%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Chebyshev might be useful.
$endgroup$
– copper.hat
2 hours ago