“The order of a torus link can be understood as a rational number”Alexander Multivariate Polynomial of a...
when is out of tune ok?
How did Arya survive the stabbing?
Class Action - which options I have?
Where does the Z80 processor start executing from?
I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?
Increase performance creating Mandelbrot set in python
Is exact Kanji stroke length important?
Was a professor correct to chastise me for writing "Dear Prof. X" rather than "Dear Professor X"?
What is paid subscription needed for in Mortal Kombat 11?
Hostile work environment after whistle-blowing on coworker and our boss. What do I do?
Inappropriate reference requests from Journal reviewers
Trouble understanding the speech of overseas colleagues
Failed to fetch jessie backports repository
Replace character with another only if repeated and not part of a word
How do I extract a value from a time formatted value in excel?
Valid Badminton Score?
How do I rename a Linux host without needing to reboot for the rename to take effect?
Go Pregnant or Go Home
How to be diplomatic in refusing to write code that breaches the privacy of our users
Pre-amplifier input protection
Is there a problem with hiding "forgot password" until it's needed?
Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?
Applicability of Single Responsibility Principle
How to check is there any negative term in a large list?
“The order of a torus link can be understood as a rational number”
Alexander Multivariate Polynomial of a General Torus LinkCan the HOMFLY polynomial be obtained from the Kauffman Polynomial for torus knots?Crossing number and Torus linksTorus link and knotsWhat is a good reference for learning about induced norms?How do I find subsequent work done on a paper?Unlinking the toroidified Hopf link, overhand knot, in $mathbb R^4$?Are there special terms for (non-)bijective isometries?Are the borromean rings a torus link?Involution of the 3 and 4-holed torus and its effects on some knots and links
$begingroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
$endgroup$
add a comment |
$begingroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
$endgroup$
add a comment |
$begingroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
$endgroup$
The order of a torus link consists of a pair of integers $(m,n)$, with at least one of them nonzero, and it is such that if the two integers are not coprime, i.e. of the form $(km, kn)$, the link forms $k$ interlinked copies of the $(m,n)$ knot.
Because of this, I see a clear correspondence between these orders and the rational numbers $mathbb Q$ (possibly supplemented with a point at infinity, if required?), which also consist of pairs of integers with equivalences between pairs that are multiples of each other.
Is there any nice reference that formalizes this correspondence, or which uses it explicitly? The more 'textbook-y' (which is to say, the more suitable for use as a reference for this fact in a separate context), the better.
reference-request rational-numbers knot-theory
reference-request rational-numbers knot-theory
asked Mar 15 at 18:18
E.P.E.P.
1,5401125
1,5401125
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149632%2fthe-order-of-a-torus-link-can-be-understood-as-a-rational-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
add a comment |
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
add a comment |
$begingroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
$endgroup$
A torus link is any link that is isotopic into the standard unknotted torus in $S^3$ (the Clifford torus, if you like). So, the problem of torus link classification can start with the question of what are the possible links in $T^2$ itself, with all the isotopies restricted to the torus.
Take a look at the section "Knots in the torus," starting on page 17 of Rolfsen's Knots and Links. A first step of link classification can be knot classification, i.e., the classification of simple closed curves in $T^2$. There are two main types: separating (equivalently, nullhomotopic or bounds-a-disk) and non-separating. The separating ones are just unknots, so let's exclude them. The non-separating curves are in one-to-one correspondence with non-divisible elements of $H_1(T^2)$, and if you choose a basis for $H_1(T^2)$ you get the pair-of-integers representation $(a,b)$ with $a,b$ coprime. Conceptually, the argument is that in the universal cover, the loop lifts to a path between integer points, and by a homotopy you can pull the line tight and it has rational slope.
For links on a torus, you can use intersection numbers to see that all the components have to be parallel (meaning they all have the same slope). There is a standard construction to represent an arbitrary element of $H_1$ as a collection of simple closed curves, and in $T^2$ this element is unique up to isotopy. For $(ka,kb)in H_1(T^2)$ with $a,b$ coprime and $kgeq 1$ (which encompasses every non-zero element of the homology group), the construction gives $k$ parallel copies of the $(a,b)$ knot in $T^2$.
Calegari's book on foliations says a little at the beginning about the relation between homotopy and isotopy in a surface: https://math.uchicago.edu/~dannyc/books/foliations/foliations.html
answered Mar 16 at 20:22
Kyle MillerKyle Miller
9,700930
9,700930
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149632%2fthe-order-of-a-torus-link-can-be-understood-as-a-rational-number%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown