Snells lov



Text document with red question mark.svg Denne artikkelen manglar kjelder eller referansar. Hjelp Wikipedia med å finna truverdige kjelder!

Snells lov (også kalla brytingslova) definerer kva som skjer når ei bølgje passerer ei grenseflate mellom to medium med ulik bølgjefart eller brytingsindeks. Lova seier at n1sinθ1=n2sinθ2displaystyle n_1sintheta _1=n_2sintheta _2, der n1displaystyle n_1 og n2displaystyle n_2 er brytingsindeksen til høvesvis medium 1 og 2, og θ1displaystyle theta _1 og θ2displaystyle theta _2 er høvesvis innfallsvinkelen og brytingsvinkelen. Lova gjeld for alle slags bølgjer, men er gjerne mest kjend når det gjeld lysbryting. Normalen på grenseflata der bølgja treffer vert kalla innfallsloddet.







Popular posts from this blog

Why is system upgrade showing unstable version when upgrading in backend?System Settings > System Upgrade link does not existsComposer Error While upgrading magento version 2.1.6 to 2.2.2How to upgrade magento 1.4.0.0 to above 1.6 versionIssue with upgrading Magento Version from 2.1.7 to 2.1.12Magento 2.2.5: Error on running setup: upgrade after upgrading Magento from 2.2.2 to 2.2.5Are there any Magento Code Release Notes?getting error when upgrading from Magento 2.1.5 to Magento 2.2.6Will the installed third party plugins upgrade when we upgrade Magento version via composerWhy PHP Settings Check and Checking Component Dependency showing error during Magento 2.3 upgrade?Fatal error: Out of memory (in composer) during upgrade Magento2.2.1 to Magento 2.3 when run composer update command

Integral that is continuous and looks like it converges to a geometric seriesTesting if a geometric series converges by taking limit to infinitySummation of arithmetic-geometric series of higher orderGeometric series with polynomial exponentHow to Recognize a Geometric SeriesShowing an integral equality with series over the integersDiscontinuity of a series of continuous functionsReasons why a Series ConvergesSum of infinite geometric series with two terms in summationUsing geometric series for computing IntegralsLimit of geometric series sum when $r = 1$

京都御所