If $sum a_n$ converges and $b_n=sumlimits_{k=n}^{infty}a_n $, prove that $sum frac{a_n}{b_n}$ divergesWhat...
Crossing the line between justified force and brutality
Short story about space worker geeks who zone out by 'listening' to radiation from stars
How long to clear the 'suck zone' of a turbofan after start is initiated?
Do sorcerers' Subtle Spells require a skill check to be unseen?
Is expanding the research of a group into machine learning as a PhD student risky?
Is it appropriate to ask a job candidate if we can record their interview?
Anatomically Correct Strange Women In Ponds Distributing Swords
Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?
Is this apparent Class Action settlement a spam message?
How does Loki do this?
Large drywall patch supports
Why Were Madagascar and New Zealand Discovered So Late?
How to be diplomatic in refusing to write code that breaches the privacy of our users
What is the difference between "behavior" and "behaviour"?
Is oxalic acid dihydrate considered a primary acid standard in analytical chemistry?
What can we do to stop prior company from asking us questions?
How to write papers efficiently when English isn't my first language?
Is the destination of a commercial flight important for the pilot?
What is the best translation for "slot" in the context of multiplayer video games?
Proof of work - lottery approach
Term for the "extreme-extension" version of a straw man fallacy?
Gears on left are inverse to gears on right?
Roman Numeral Treatment of Suspensions
Unreliable Magic - Is it worth it?
If $sum a_n$ converges and $b_n=sumlimits_{k=n}^{infty}a_n $, prove that $sum frac{a_n}{b_n}$ diverges
What can be said about the convergence/divergence of $sum a_n/r_n$ when $sum a_n$ is convergent?Prove that the series $sum frac{a_n}{r_n}$ diverges.An important lemma involving diverging sequencesMembers divided by remainder series diverges$frac {a_{n+1}}{a_n} le frac {b_{n+1}}{b_n}$ If $sum_{n=1}^infty b_n$ converges then $sum_{n=1}^infty a_n$ converges as wellIf $ sum a_n$ diverges and $lambda_n to infty$, does the series $ sum lambda_na_n$ diverge?If $sum a_n b_n$ converges for all $(b_n)$ such that $b_n to 0$, then $sum |a_n|$ converges.If $sumlimits_{n=1}^infty a_n$ diverges, then $sumlimits_{n=1}^inftyexpleft(-sumlimits_{k=1}^n k a_kright)$ converges?If a ${a_n}$ diverges, so $a_n rightarrow + infty$, how to find sequence ${b_n}$ such that $sum |b_n|<infty$ but $sum |a_n||b_n|$ diverges?Show that if $sum b_n$ is a rearrangement of a series $sum a_n$ , and $a_n$ diverges to $infty$, then $sum b_n = infty$Convergence of $sumfrac{a_n}{b_n} $ and $ sum (frac{a_n}{b_n})^2 $ implies convergence of $ sumfrac{a_n}{a_n+b_n}$Convergence of infinite series for $sum {{a_n}} $ and $sum {{b_n}}$$a_n$ is convergent, $b_n$ bounded, prove $sum a_n b_n$ convergesProve that the series $sum frac{a_n}{r_n}$ diverges.
$begingroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.
I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
$endgroup$
add a comment |
$begingroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.
I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
$endgroup$
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
add a comment |
$begingroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.
I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
$endgroup$
Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.
I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?
real-analysis sequences-and-series analysis divergent-series
real-analysis sequences-and-series analysis divergent-series
edited Dec 24 '15 at 11:00
Yiorgos S. Smyrlis
63.6k1385165
63.6k1385165
asked Aug 11 '14 at 7:28
BhauryalBhauryal
3,2391237
3,2391237
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
add a comment |
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
Hence
$$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
$$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.
$endgroup$
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
holds, hence:
$$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
but the RHS of $(4)$ diverges.
$endgroup$
add a comment |
$begingroup$
First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
$$
Then we have that
$$
sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
$$
and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.
$endgroup$
add a comment |
$begingroup$
For $m>n$ one has
$$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
&=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
end{aligned}$$
Can you continue from here?
$endgroup$
add a comment |
$begingroup$
For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.
$$
lim_{n to infty} sum_{k=n}^{infty}c_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_{k=n}^{infty}c_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
$$
$endgroup$
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.
Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$
$endgroup$
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f893738%2fif-sum-a-n-converges-and-b-n-sum-limits-k-n-inftya-n-prove-that-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
Hence
$$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
$$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.
$endgroup$
add a comment |
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
Hence
$$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
$$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.
$endgroup$
add a comment |
$begingroup$
Sorry, my previous answer was not correct. A new tentative:
$$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
Hence
$$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
$$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.
$endgroup$
Sorry, my previous answer was not correct. A new tentative:
$$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
Hence
$$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
$$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.
edited Aug 11 '14 at 8:42
answered Aug 11 '14 at 7:44
KelennerKelenner
17.5k1830
17.5k1830
add a comment |
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
holds, hence:
$$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
but the RHS of $(4)$ diverges.
$endgroup$
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
holds, hence:
$$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
but the RHS of $(4)$ diverges.
$endgroup$
add a comment |
$begingroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
holds, hence:
$$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
but the RHS of $(4)$ diverges.
$endgroup$
Assuming $sum a_n=L$, for any $n$ big enough we must have:
$$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
$$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
contradiction. This implies that for any $ngeq M$
$$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
holds, hence:
$$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
but the RHS of $(4)$ diverges.
answered Aug 11 '14 at 8:03
Jack D'AurizioJack D'Aurizio
292k33284672
292k33284672
add a comment |
add a comment |
$begingroup$
First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
$$
Then we have that
$$
sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
$$
and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.
$endgroup$
add a comment |
$begingroup$
First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
$$
Then we have that
$$
sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
$$
and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.
$endgroup$
add a comment |
$begingroup$
First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
$$
Then we have that
$$
sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
$$
and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.
$endgroup$
First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.
We have that, for $n> m$
$$
frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
$$
Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
$$
frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
$$
Then we have that
$$
sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
$$
and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.
edited Dec 24 '15 at 10:58
answered Aug 11 '14 at 7:44
Yiorgos S. SmyrlisYiorgos S. Smyrlis
63.6k1385165
63.6k1385165
add a comment |
add a comment |
$begingroup$
For $m>n$ one has
$$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
&=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
end{aligned}$$
Can you continue from here?
$endgroup$
add a comment |
$begingroup$
For $m>n$ one has
$$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
&=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
end{aligned}$$
Can you continue from here?
$endgroup$
add a comment |
$begingroup$
For $m>n$ one has
$$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
&=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
end{aligned}$$
Can you continue from here?
$endgroup$
For $m>n$ one has
$$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
&=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
end{aligned}$$
Can you continue from here?
answered Aug 11 '14 at 7:44
Quang HoangQuang Hoang
13.2k1233
13.2k1233
add a comment |
add a comment |
$begingroup$
For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.
$$
lim_{n to infty} sum_{k=n}^{infty}c_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_{k=n}^{infty}c_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
$$
$endgroup$
add a comment |
$begingroup$
For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.
$$
lim_{n to infty} sum_{k=n}^{infty}c_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_{k=n}^{infty}c_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
$$
$endgroup$
add a comment |
$begingroup$
For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.
$$
lim_{n to infty} sum_{k=n}^{infty}c_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_{k=n}^{infty}c_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
$$
$endgroup$
For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.
$$
lim_{n to infty} sum_{k=n}^{infty}c_k = 0
$$
i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$
$$
left| sum_{k=n}^{infty}c_k right| < epsilon
$$
We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.
$$
sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
$$
answered Aug 11 '14 at 8:50
vladimirmvladimirm
630514
630514
add a comment |
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.
Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$
$endgroup$
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.
Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$
$endgroup$
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
$begingroup$
First answer was wrong. Here is my new try :
If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.
Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$
$endgroup$
First answer was wrong. Here is my new try :
If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.
Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.
Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :
$$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$
edited Aug 13 '14 at 12:17
answered Aug 12 '14 at 11:42
yultanyultan
1,25289
1,25289
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
$endgroup$
– Bhauryal
Aug 12 '14 at 16:58
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
$endgroup$
– yultan
Aug 12 '14 at 19:48
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
$endgroup$
– PhoemueX
Aug 13 '14 at 8:14
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
$begingroup$
Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
$endgroup$
– yultan
Aug 13 '14 at 11:56
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f893738%2fif-sum-a-n-converges-and-b-n-sum-limits-k-n-inftya-n-prove-that-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33