If $sum a_n$ converges and $b_n=sumlimits_{k=n}^{infty}a_n $, prove that $sum frac{a_n}{b_n}$ divergesWhat...

Crossing the line between justified force and brutality

Short story about space worker geeks who zone out by 'listening' to radiation from stars

How long to clear the 'suck zone' of a turbofan after start is initiated?

Do sorcerers' Subtle Spells require a skill check to be unseen?

Is expanding the research of a group into machine learning as a PhD student risky?

Is it appropriate to ask a job candidate if we can record their interview?

Anatomically Correct Strange Women In Ponds Distributing Swords

Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?

Is this apparent Class Action settlement a spam message?

How does Loki do this?

Large drywall patch supports

Why Were Madagascar and New Zealand Discovered So Late?

How to be diplomatic in refusing to write code that breaches the privacy of our users

What is the difference between "behavior" and "behaviour"?

Is oxalic acid dihydrate considered a primary acid standard in analytical chemistry?

What can we do to stop prior company from asking us questions?

How to write papers efficiently when English isn't my first language?

Is the destination of a commercial flight important for the pilot?

What is the best translation for "slot" in the context of multiplayer video games?

Proof of work - lottery approach

Term for the "extreme-extension" version of a straw man fallacy?

Gears on left are inverse to gears on right?

Roman Numeral Treatment of Suspensions

Unreliable Magic - Is it worth it?



If $sum a_n$ converges and $b_n=sumlimits_{k=n}^{infty}a_n $, prove that $sum frac{a_n}{b_n}$ diverges


What can be said about the convergence/divergence of $sum a_n/r_n$ when $sum a_n$ is convergent?Prove that the series $sum frac{a_n}{r_n}$ diverges.An important lemma involving diverging sequencesMembers divided by remainder series diverges$frac {a_{n+1}}{a_n} le frac {b_{n+1}}{b_n}$ If $sum_{n=1}^infty b_n$ converges then $sum_{n=1}^infty a_n$ converges as wellIf $ sum a_n$ diverges and $lambda_n to infty$, does the series $ sum lambda_na_n$ diverge?If $sum a_n b_n$ converges for all $(b_n)$ such that $b_n to 0$, then $sum |a_n|$ converges.If $sumlimits_{n=1}^infty a_n$ diverges, then $sumlimits_{n=1}^inftyexpleft(-sumlimits_{k=1}^n k a_kright)$ converges?If a ${a_n}$ diverges, so $a_n rightarrow + infty$, how to find sequence ${b_n}$ such that $sum |b_n|<infty$ but $sum |a_n||b_n|$ diverges?Show that if $sum b_n$ is a rearrangement of a series $sum a_n$ , and $a_n$ diverges to $infty$, then $sum b_n = infty$Convergence of $sumfrac{a_n}{b_n} $ and $ sum (frac{a_n}{b_n})^2 $ implies convergence of $ sumfrac{a_n}{a_n+b_n}$Convergence of infinite series for $sum {{a_n}} $ and $sum {{b_n}}$$a_n$ is convergent, $b_n$ bounded, prove $sum a_n b_n$ convergesProve that the series $sum frac{a_n}{r_n}$ diverges.













21












$begingroup$



Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.




I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is this homework, though?
    $endgroup$
    – k.stm
    Aug 11 '14 at 7:33
















21












$begingroup$



Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.




I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is this homework, though?
    $endgroup$
    – k.stm
    Aug 11 '14 at 7:33














21












21








21


11



$begingroup$



Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.




I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?










share|cite|improve this question











$endgroup$





Let $displaystyle sum a_n$ be convergent series of positive terms and set $displaystyle b_n=sum_{k=n}^{infty}a_n$ , then prove that $displaystylesum frac{a_n}{b_n}$ diverges.




I could see that ${b_n}$ is monotonically decreasing sequence converging to $0$ and I can write $displaystylesum frac{a_n}{b_n}=sumfrac{b_n-b_{n+1}}{b_n}$, how shall I proceed further?







real-analysis sequences-and-series analysis divergent-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 24 '15 at 11:00









Yiorgos S. Smyrlis

63.6k1385165




63.6k1385165










asked Aug 11 '14 at 7:28









BhauryalBhauryal

3,2391237




3,2391237












  • $begingroup$
    Is this homework, though?
    $endgroup$
    – k.stm
    Aug 11 '14 at 7:33


















  • $begingroup$
    Is this homework, though?
    $endgroup$
    – k.stm
    Aug 11 '14 at 7:33
















$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33




$begingroup$
Is this homework, though?
$endgroup$
– k.stm
Aug 11 '14 at 7:33










6 Answers
6






active

oldest

votes


















10












$begingroup$

Sorry, my previous answer was not correct. A new tentative:



$$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
Hence
$$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
$$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.






share|cite|improve this answer











$endgroup$





















    5












    $begingroup$

    Assuming $sum a_n=L$, for any $n$ big enough we must have:
    $$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
    otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
    $$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
    contradiction. This implies that for any $ngeq M$
    $$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
    holds, hence:
    $$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
    but the RHS of $(4)$ diverges.






    share|cite|improve this answer









    $endgroup$





















      5












      $begingroup$

      First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.



      We have that, for $n> m$
      $$
      frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
      frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
      $$
      Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
      $$
      frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
      $$
      Then we have that
      $$
      sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
      sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
      $$
      and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.






      share|cite|improve this answer











      $endgroup$





















        4












        $begingroup$

        For $m>n$ one has
        $$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
        &=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
        end{aligned}$$
        Can you continue from here?






        share|cite|improve this answer









        $endgroup$





















          2












          $begingroup$

          For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.



          $$
          lim_{n to infty} sum_{k=n}^{infty}c_k = 0
          $$



          i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$



          $$
          left| sum_{k=n}^{infty}c_k right| < epsilon
          $$



          We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.



          $$
          sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
          $$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            First answer was wrong. Here is my new try :



            If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.



            Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.



            Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :



            $$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
              $endgroup$
              – Bhauryal
              Aug 12 '14 at 16:58










            • $begingroup$
              For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
              $endgroup$
              – yultan
              Aug 12 '14 at 19:48












            • $begingroup$
              Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
              $endgroup$
              – PhoemueX
              Aug 13 '14 at 8:14










            • $begingroup$
              Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
              $endgroup$
              – yultan
              Aug 13 '14 at 11:56











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f893738%2fif-sum-a-n-converges-and-b-n-sum-limits-k-n-inftya-n-prove-that-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            6 Answers
            6






            active

            oldest

            votes








            6 Answers
            6






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            Sorry, my previous answer was not correct. A new tentative:



            $$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
            Hence
            $$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
            $$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
            Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.






            share|cite|improve this answer











            $endgroup$


















              10












              $begingroup$

              Sorry, my previous answer was not correct. A new tentative:



              $$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
              Hence
              $$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
              $$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
              Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.






              share|cite|improve this answer











              $endgroup$
















                10












                10








                10





                $begingroup$

                Sorry, my previous answer was not correct. A new tentative:



                $$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
                Hence
                $$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
                $$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
                Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.






                share|cite|improve this answer











                $endgroup$



                Sorry, my previous answer was not correct. A new tentative:



                $$frac{b_{k+1}}{b_{k}}=1-frac{a_k}{b_k}$$
                Hence
                $$frac{b_{N+1}}{b_1}=prod_{k=1}^N{(1-frac{a_k}{b_k}})$$ and
                $$log b_{N+1}-log b_1=sum_{k=1}^N log(1-frac{a_k}{b_k})$$
                Now if the series $a_k/b_k$ is convergent, we have $a_k/b_k to 0$, and as $log(1-x)sim -x$ and the series have constant sign, this imply that the series $displaystyle log (1-frac{a_k}{b_k})$ is convergent, a contradiction as $log (b_{N+1}) to -infty$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Aug 11 '14 at 8:42

























                answered Aug 11 '14 at 7:44









                KelennerKelenner

                17.5k1830




                17.5k1830























                    5












                    $begingroup$

                    Assuming $sum a_n=L$, for any $n$ big enough we must have:
                    $$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
                    otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
                    $$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
                    contradiction. This implies that for any $ngeq M$
                    $$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
                    holds, hence:
                    $$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
                    but the RHS of $(4)$ diverges.






                    share|cite|improve this answer









                    $endgroup$


















                      5












                      $begingroup$

                      Assuming $sum a_n=L$, for any $n$ big enough we must have:
                      $$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
                      otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
                      $$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
                      contradiction. This implies that for any $ngeq M$
                      $$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
                      holds, hence:
                      $$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
                      but the RHS of $(4)$ diverges.






                      share|cite|improve this answer









                      $endgroup$
















                        5












                        5








                        5





                        $begingroup$

                        Assuming $sum a_n=L$, for any $n$ big enough we must have:
                        $$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
                        otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
                        $$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
                        contradiction. This implies that for any $ngeq M$
                        $$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
                        holds, hence:
                        $$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
                        but the RHS of $(4)$ diverges.






                        share|cite|improve this answer









                        $endgroup$



                        Assuming $sum a_n=L$, for any $n$ big enough we must have:
                        $$a_n geq frac{1}{n}sum_{m>n}a_m,tag{1}$$
                        otherwise, assuming that $N$ is the greatest integer for which $(1)$ holds, we have:
                        $$L< a_N+frac{1}{N}(L-a_n)+frac{N-1}{(N+1)N}(L-a_n)+ldots = L,tag{2}$$
                        contradiction. This implies that for any $ngeq M$
                        $$left(1+frac{1}{n}right)a_ngeqfrac{1}{n}b_ntag{3}$$
                        holds, hence:
                        $$sum_{ngeq M}frac{a_n}{b_n}geqsum_{ngeq M}frac{1}{n+1},tag{4}$$
                        but the RHS of $(4)$ diverges.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Aug 11 '14 at 8:03









                        Jack D'AurizioJack D'Aurizio

                        292k33284672




                        292k33284672























                            5












                            $begingroup$

                            First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.



                            We have that, for $n> m$
                            $$
                            frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
                            frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
                            $$
                            Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
                            $$
                            frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
                            $$
                            Then we have that
                            $$
                            sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
                            sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
                            $$
                            and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.






                            share|cite|improve this answer











                            $endgroup$


















                              5












                              $begingroup$

                              First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.



                              We have that, for $n> m$
                              $$
                              frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
                              frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
                              $$
                              Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
                              $$
                              frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
                              $$
                              Then we have that
                              $$
                              sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
                              sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
                              $$
                              and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.






                              share|cite|improve this answer











                              $endgroup$
















                                5












                                5








                                5





                                $begingroup$

                                First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.



                                We have that, for $n> m$
                                $$
                                frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
                                frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
                                $$
                                Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
                                $$
                                frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
                                $$
                                Then we have that
                                $$
                                sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
                                sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
                                $$
                                and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.






                                share|cite|improve this answer











                                $endgroup$



                                First note that ${b_n}_{ninmathbb N}$ is a decreasing sequence of positive numbers, which tends to zero.



                                We have that, for $n> m$
                                $$
                                frac{a_m}{b_m}+cdots+frac{a_n}{b_n}ge
                                frac{a_m}{b_m}+cdots+frac{a_n}{b_m}=frac{1}{b_m}(a_m+cdots+a_n)=frac{b_n-b_m}{b_m}=1-frac{b_n}{b_m}.
                                $$
                                Next, as $b_nsearrow 0$, choose $m_1,m_2,ldots,m_k,ldots$, so that
                                $$
                                frac{b_{m_{i+1}}}{b_{m_i}}<1/2.
                                $$
                                Then we have that
                                $$
                                sum_{n=1}^{m_k}frac{a_n}{b_n}gesum_{i=1}^{k-1}sum_{n=m_i+1}^{m_{i+1}}frac{a_n}{b_n}ge
                                sum_{i=1}^{k-1}left(1-frac{b_{m_i}}{b_{m_{i+1}}}right)gefrac{k-1}{2},
                                $$
                                and hence $displaystylesum_{n=1}^{infty}frac{a_n}{b_n}=infty$.







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Dec 24 '15 at 10:58

























                                answered Aug 11 '14 at 7:44









                                Yiorgos S. SmyrlisYiorgos S. Smyrlis

                                63.6k1385165




                                63.6k1385165























                                    4












                                    $begingroup$

                                    For $m>n$ one has
                                    $$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
                                    &=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
                                    end{aligned}$$
                                    Can you continue from here?






                                    share|cite|improve this answer









                                    $endgroup$


















                                      4












                                      $begingroup$

                                      For $m>n$ one has
                                      $$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
                                      &=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
                                      end{aligned}$$
                                      Can you continue from here?






                                      share|cite|improve this answer









                                      $endgroup$
















                                        4












                                        4








                                        4





                                        $begingroup$

                                        For $m>n$ one has
                                        $$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
                                        &=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
                                        end{aligned}$$
                                        Can you continue from here?






                                        share|cite|improve this answer









                                        $endgroup$



                                        For $m>n$ one has
                                        $$begin{aligned}frac{a_n}{b_n}+cdotsfrac{a_m}{b_m}&ge frac{a_n}{b_n}+cdots +frac{a_m}{b_n}\
                                        &=frac{b_n-b_{m+1}}{b_n} = 1-frac{b_{m+1}}{b_n}.
                                        end{aligned}$$
                                        Can you continue from here?







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Aug 11 '14 at 7:44









                                        Quang HoangQuang Hoang

                                        13.2k1233




                                        13.2k1233























                                            2












                                            $begingroup$

                                            For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.



                                            $$
                                            lim_{n to infty} sum_{k=n}^{infty}c_k = 0
                                            $$



                                            i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$



                                            $$
                                            left| sum_{k=n}^{infty}c_k right| < epsilon
                                            $$



                                            We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.



                                            $$
                                            sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
                                            $$






                                            share|cite|improve this answer









                                            $endgroup$


















                                              2












                                              $begingroup$

                                              For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.



                                              $$
                                              lim_{n to infty} sum_{k=n}^{infty}c_k = 0
                                              $$



                                              i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$



                                              $$
                                              left| sum_{k=n}^{infty}c_k right| < epsilon
                                              $$



                                              We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.



                                              $$
                                              sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
                                              $$






                                              share|cite|improve this answer









                                              $endgroup$
















                                                2












                                                2








                                                2





                                                $begingroup$

                                                For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.



                                                $$
                                                lim_{n to infty} sum_{k=n}^{infty}c_k = 0
                                                $$



                                                i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$



                                                $$
                                                left| sum_{k=n}^{infty}c_k right| < epsilon
                                                $$



                                                We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.



                                                $$
                                                sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
                                                $$






                                                share|cite|improve this answer









                                                $endgroup$



                                                For a sum $sum_{k=0}^{infty}c_k$ to converge its tail must converge to 0.



                                                $$
                                                lim_{n to infty} sum_{k=n}^{infty}c_k = 0
                                                $$



                                                i.e. for every $epsilon$ there exist a $n_0$ such that for all $n > n_0$



                                                $$
                                                left| sum_{k=n}^{infty}c_k right| < epsilon
                                                $$



                                                We can prove that there exists a $epsilon$ such that for all $n$ the sum is bigger than $epsilon$ and thus the sum diverges.



                                                $$
                                                sum_{k=n}^{infty}frac{a_k}{b_k} geq frac{1}{b_n}sum_{k=n}^{infty}a_k = 1 = epsilon
                                                $$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Aug 11 '14 at 8:50









                                                vladimirmvladimirm

                                                630514




                                                630514























                                                    2












                                                    $begingroup$

                                                    First answer was wrong. Here is my new try :



                                                    If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.



                                                    Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.



                                                    Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :



                                                    $$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$






                                                    share|cite|improve this answer











                                                    $endgroup$













                                                    • $begingroup$
                                                      please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
                                                      $endgroup$
                                                      – Bhauryal
                                                      Aug 12 '14 at 16:58










                                                    • $begingroup$
                                                      For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 12 '14 at 19:48












                                                    • $begingroup$
                                                      Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
                                                      $endgroup$
                                                      – PhoemueX
                                                      Aug 13 '14 at 8:14










                                                    • $begingroup$
                                                      Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 13 '14 at 11:56
















                                                    2












                                                    $begingroup$

                                                    First answer was wrong. Here is my new try :



                                                    If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.



                                                    Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.



                                                    Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :



                                                    $$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$






                                                    share|cite|improve this answer











                                                    $endgroup$













                                                    • $begingroup$
                                                      please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
                                                      $endgroup$
                                                      – Bhauryal
                                                      Aug 12 '14 at 16:58










                                                    • $begingroup$
                                                      For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 12 '14 at 19:48












                                                    • $begingroup$
                                                      Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
                                                      $endgroup$
                                                      – PhoemueX
                                                      Aug 13 '14 at 8:14










                                                    • $begingroup$
                                                      Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 13 '14 at 11:56














                                                    2












                                                    2








                                                    2





                                                    $begingroup$

                                                    First answer was wrong. Here is my new try :



                                                    If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.



                                                    Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.



                                                    Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :



                                                    $$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$






                                                    share|cite|improve this answer











                                                    $endgroup$



                                                    First answer was wrong. Here is my new try :



                                                    If $underset{nto+infty}{lim} frac{a_n}{b_n}$ is not $ 0 $ or does not exist, $sum frac{a_n}{b_n}$ is directly divergent.



                                                    Otherwise we have $underset{nto+infty}{lim} frac{a_n}{b_n} = 0 $ so $b_{n+1} sim b_n $ . It implies $sum frac{a_n}{b_n} = sum frac{b_n-b_{n+1}}{b_n}$ and $sum frac{b_n-b_{n+1}}{b_{n+1}}$ have the same behavior thanks to limit comparison test.



                                                    Now, since $b_n$ is decreasing and tends to $0$ as $nto+infty$, we can use an integral comparison :



                                                    $$ sum_{n=1}^N frac{b_n-b_{n+1}}{b_{n+1}} ge sum_{n=1}^N int_{b_{n+1}}^{b_n} frac{dx}{x} = int_{b_{N+1}}^{b_1} frac{dx}{x} = ln left(frac{b_1}{b_{N+1}}right) underset{Nto+infty}{longrightarrow}+infty $$







                                                    share|cite|improve this answer














                                                    share|cite|improve this answer



                                                    share|cite|improve this answer








                                                    edited Aug 13 '14 at 12:17

























                                                    answered Aug 12 '14 at 11:42









                                                    yultanyultan

                                                    1,25289




                                                    1,25289












                                                    • $begingroup$
                                                      please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
                                                      $endgroup$
                                                      – Bhauryal
                                                      Aug 12 '14 at 16:58










                                                    • $begingroup$
                                                      For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 12 '14 at 19:48












                                                    • $begingroup$
                                                      Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
                                                      $endgroup$
                                                      – PhoemueX
                                                      Aug 13 '14 at 8:14










                                                    • $begingroup$
                                                      Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 13 '14 at 11:56


















                                                    • $begingroup$
                                                      please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
                                                      $endgroup$
                                                      – Bhauryal
                                                      Aug 12 '14 at 16:58










                                                    • $begingroup$
                                                      For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 12 '14 at 19:48












                                                    • $begingroup$
                                                      Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
                                                      $endgroup$
                                                      – PhoemueX
                                                      Aug 13 '14 at 8:14










                                                    • $begingroup$
                                                      Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
                                                      $endgroup$
                                                      – yultan
                                                      Aug 13 '14 at 11:56
















                                                    $begingroup$
                                                    please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
                                                    $endgroup$
                                                    – Bhauryal
                                                    Aug 12 '14 at 16:58




                                                    $begingroup$
                                                    please explain $displaystyle frac{b_n-b_{n+1}}{b_n} ge int_{b_{n+1}}^{b_n} frac{dx}{x}$
                                                    $endgroup$
                                                    – Bhauryal
                                                    Aug 12 '14 at 16:58












                                                    $begingroup$
                                                    For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
                                                    $endgroup$
                                                    – yultan
                                                    Aug 12 '14 at 19:48






                                                    $begingroup$
                                                    For any function $f$ positive on $[a,b], a < b $, we have (just make a quick drawing) : $$(b-a) cdot underset{xin [a,b]}{min} f(x) le int_a^b f(t) dt le (b-a)cdot underset{xin [a,b]}{max} f(x) $$ Another way to see it is that the mean value of the function $f$ over $[a,b]$ is between the minimum and the maximum value of $f$ on this interval.
                                                    $endgroup$
                                                    – yultan
                                                    Aug 12 '14 at 19:48














                                                    $begingroup$
                                                    Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
                                                    $endgroup$
                                                    – PhoemueX
                                                    Aug 13 '14 at 8:14




                                                    $begingroup$
                                                    Yes, but $x leq b_n$ and thus $frac{1}{x} geq frac{1}{b_n}$, but you need $frac{1}{x} leq frac{1}{b_n}$.
                                                    $endgroup$
                                                    – PhoemueX
                                                    Aug 13 '14 at 8:14












                                                    $begingroup$
                                                    Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
                                                    $endgroup$
                                                    – yultan
                                                    Aug 13 '14 at 11:56




                                                    $begingroup$
                                                    Sorry I made a mistake. You are right it should be with $b_{n+1}$. Initial answer corrected, though.
                                                    $endgroup$
                                                    – yultan
                                                    Aug 13 '14 at 11:56


















                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f893738%2fif-sum-a-n-converges-and-b-n-sum-limits-k-n-inftya-n-prove-that-s%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Nidaros erkebispedøme

                                                    Birsay

                                                    Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...