How can I know the derivability of this function?Show that $g'(0)neq lim_{xto 0} g'(x)$L'Hospital's rule...
Is there a familial term for apples and pears?
Why was the small council so happy for Tyrion to become the Master of Coin?
The magic money tree problem
Why don't electron-positron collisions release infinite energy?
Why Is Death Allowed In the Matrix?
Copycat chess is back
Is there really no realistic way for a skeleton monster to move around without magic?
What are these boxed doors outside store fronts in New York?
"which" command doesn't work / path of Safari?
How to type dʒ symbol (IPA) on Mac?
Why is "Reports" in sentence down without "The"
Motorized valve interfering with button?
How do I create uniquely male characters?
Concept of linear mappings are confusing me
Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?
Why is an old chain unsafe?
What typically incentivizes a professor to change jobs to a lower ranking university?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
Do airline pilots ever risk not hearing communication directed to them specifically, from traffic controllers?
How can bays and straits be determined in a procedurally generated map?
declaring a variable twice in IIFE
How can I fix this gap between bookcases I made?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?
How can I know the derivability of this function?
Show that $g'(0)neq lim_{xto 0} g'(x)$L'Hospital's rule problem $lim_{xto 0^+}(x^{x}-1)ln(x)$Question on how to find this particular limit..Limit quotient lawTrigonometric limit: Dividing the Numerator and Denominator by $theta;?$If $lim_{xtoinfty}frac{sin x}{x} = 0$ is zero, why does it not work with L'hospital's way?Does L-Hopital's rule fail for $lim _{x to infty} frac{x+sin x}{x+2 sin x}$?Determine if this two-variable piecewise function is continuousHow to check the differentiability of $f(x) = x|x|$ at $x_0 = 0$?When is this function Differentiable?
$begingroup$
I've been working on this problem:
Study the differentiability of the following function $f$ at $x=0$:
$$
f=begin{cases}
dfrac{cos(3x)e^{3x} - e^x}{ln(1+x)} & text{if} x>0\
2 &text{if} x=0\
bigg(1+3ln(2)ln(1-x)bigg)^{dfrac{-1}{sin(3x)}} &text{if} - pi /6 <x<0
end{cases}
$$
Attempt:
$f$ is derivable at $x=0$ if:
$$
lim_{hto0+} [f(0+h) - f(0)]/h
= lim_{hto0-} [f(0+h) - f(0)]/h
$$
Then if we aproach to $0+$ we get:
$$
lim_{hto 0+} ([(cos(3h)e^{3h} - e^h/ ln (1+h)]-2)/h
$$
The limit of the first term: $(cos(3h)e^{3h} - e^h / ln (1+h)$ is $2$
So we got an indetermination 0/0 type
I rewrite the limit as: lim (cos(3h)e^(3h)-e^(h)-2ln(h+1))/ln(h+1)h
Then fixing the denominator to ln(h+1)^(1/h) we get 0/1 so the limit is 0
Correct me if I'm wrong, please.
Then if we aproach to $0-$ we get: lim (1+3ln(2)ln(1-h)^(-1/sin(3h))-2/h
The limit of (1+3ln(2)ln(1-h))^(-1/sin(3h)) is 2
So we get again an indetermination 0/0 type
Using L´Hopital and logaritmic derivation we get:
lim (1/sin^2(3h))(-cos(3h))(3)ln(1+3ln(2)ln(1-h))-(1/sin(3h))(1/(1+3ln(2)ln(1-h))(3ln(2)/(1-h))(-1)^(-1/sin(3h)) as h approaches to 0-
I get another indetermination so...
And at this point I'm stuck.
calculus limits derivatives
$endgroup$
add a comment |
$begingroup$
I've been working on this problem:
Study the differentiability of the following function $f$ at $x=0$:
$$
f=begin{cases}
dfrac{cos(3x)e^{3x} - e^x}{ln(1+x)} & text{if} x>0\
2 &text{if} x=0\
bigg(1+3ln(2)ln(1-x)bigg)^{dfrac{-1}{sin(3x)}} &text{if} - pi /6 <x<0
end{cases}
$$
Attempt:
$f$ is derivable at $x=0$ if:
$$
lim_{hto0+} [f(0+h) - f(0)]/h
= lim_{hto0-} [f(0+h) - f(0)]/h
$$
Then if we aproach to $0+$ we get:
$$
lim_{hto 0+} ([(cos(3h)e^{3h} - e^h/ ln (1+h)]-2)/h
$$
The limit of the first term: $(cos(3h)e^{3h} - e^h / ln (1+h)$ is $2$
So we got an indetermination 0/0 type
I rewrite the limit as: lim (cos(3h)e^(3h)-e^(h)-2ln(h+1))/ln(h+1)h
Then fixing the denominator to ln(h+1)^(1/h) we get 0/1 so the limit is 0
Correct me if I'm wrong, please.
Then if we aproach to $0-$ we get: lim (1+3ln(2)ln(1-h)^(-1/sin(3h))-2/h
The limit of (1+3ln(2)ln(1-h))^(-1/sin(3h)) is 2
So we get again an indetermination 0/0 type
Using L´Hopital and logaritmic derivation we get:
lim (1/sin^2(3h))(-cos(3h))(3)ln(1+3ln(2)ln(1-h))-(1/sin(3h))(1/(1+3ln(2)ln(1-h))(3ln(2)/(1-h))(-1)^(-1/sin(3h)) as h approaches to 0-
I get another indetermination so...
And at this point I'm stuck.
calculus limits derivatives
$endgroup$
$begingroup$
Is the $$f(x)=frac{cos(3x)e^{3x}-e^x}{ln(1+x)}$$
$endgroup$
– Dr. Sonnhard Graubner
Mar 20 at 12:29
7
$begingroup$
Please use mathjax for the formulas.
$endgroup$
– maxmilgram
Mar 20 at 12:33
add a comment |
$begingroup$
I've been working on this problem:
Study the differentiability of the following function $f$ at $x=0$:
$$
f=begin{cases}
dfrac{cos(3x)e^{3x} - e^x}{ln(1+x)} & text{if} x>0\
2 &text{if} x=0\
bigg(1+3ln(2)ln(1-x)bigg)^{dfrac{-1}{sin(3x)}} &text{if} - pi /6 <x<0
end{cases}
$$
Attempt:
$f$ is derivable at $x=0$ if:
$$
lim_{hto0+} [f(0+h) - f(0)]/h
= lim_{hto0-} [f(0+h) - f(0)]/h
$$
Then if we aproach to $0+$ we get:
$$
lim_{hto 0+} ([(cos(3h)e^{3h} - e^h/ ln (1+h)]-2)/h
$$
The limit of the first term: $(cos(3h)e^{3h} - e^h / ln (1+h)$ is $2$
So we got an indetermination 0/0 type
I rewrite the limit as: lim (cos(3h)e^(3h)-e^(h)-2ln(h+1))/ln(h+1)h
Then fixing the denominator to ln(h+1)^(1/h) we get 0/1 so the limit is 0
Correct me if I'm wrong, please.
Then if we aproach to $0-$ we get: lim (1+3ln(2)ln(1-h)^(-1/sin(3h))-2/h
The limit of (1+3ln(2)ln(1-h))^(-1/sin(3h)) is 2
So we get again an indetermination 0/0 type
Using L´Hopital and logaritmic derivation we get:
lim (1/sin^2(3h))(-cos(3h))(3)ln(1+3ln(2)ln(1-h))-(1/sin(3h))(1/(1+3ln(2)ln(1-h))(3ln(2)/(1-h))(-1)^(-1/sin(3h)) as h approaches to 0-
I get another indetermination so...
And at this point I'm stuck.
calculus limits derivatives
$endgroup$
I've been working on this problem:
Study the differentiability of the following function $f$ at $x=0$:
$$
f=begin{cases}
dfrac{cos(3x)e^{3x} - e^x}{ln(1+x)} & text{if} x>0\
2 &text{if} x=0\
bigg(1+3ln(2)ln(1-x)bigg)^{dfrac{-1}{sin(3x)}} &text{if} - pi /6 <x<0
end{cases}
$$
Attempt:
$f$ is derivable at $x=0$ if:
$$
lim_{hto0+} [f(0+h) - f(0)]/h
= lim_{hto0-} [f(0+h) - f(0)]/h
$$
Then if we aproach to $0+$ we get:
$$
lim_{hto 0+} ([(cos(3h)e^{3h} - e^h/ ln (1+h)]-2)/h
$$
The limit of the first term: $(cos(3h)e^{3h} - e^h / ln (1+h)$ is $2$
So we got an indetermination 0/0 type
I rewrite the limit as: lim (cos(3h)e^(3h)-e^(h)-2ln(h+1))/ln(h+1)h
Then fixing the denominator to ln(h+1)^(1/h) we get 0/1 so the limit is 0
Correct me if I'm wrong, please.
Then if we aproach to $0-$ we get: lim (1+3ln(2)ln(1-h)^(-1/sin(3h))-2/h
The limit of (1+3ln(2)ln(1-h))^(-1/sin(3h)) is 2
So we get again an indetermination 0/0 type
Using L´Hopital and logaritmic derivation we get:
lim (1/sin^2(3h))(-cos(3h))(3)ln(1+3ln(2)ln(1-h))-(1/sin(3h))(1/(1+3ln(2)ln(1-h))(3ln(2)/(1-h))(-1)^(-1/sin(3h)) as h approaches to 0-
I get another indetermination so...
And at this point I'm stuck.
calculus limits derivatives
calculus limits derivatives
edited Mar 21 at 17:04
Jack
27.7k1782204
27.7k1782204
asked Mar 20 at 12:23
Isabella Sofia KippesIsabella Sofia Kippes
1
1
$begingroup$
Is the $$f(x)=frac{cos(3x)e^{3x}-e^x}{ln(1+x)}$$
$endgroup$
– Dr. Sonnhard Graubner
Mar 20 at 12:29
7
$begingroup$
Please use mathjax for the formulas.
$endgroup$
– maxmilgram
Mar 20 at 12:33
add a comment |
$begingroup$
Is the $$f(x)=frac{cos(3x)e^{3x}-e^x}{ln(1+x)}$$
$endgroup$
– Dr. Sonnhard Graubner
Mar 20 at 12:29
7
$begingroup$
Please use mathjax for the formulas.
$endgroup$
– maxmilgram
Mar 20 at 12:33
$begingroup$
Is the $$f(x)=frac{cos(3x)e^{3x}-e^x}{ln(1+x)}$$
$endgroup$
– Dr. Sonnhard Graubner
Mar 20 at 12:29
$begingroup$
Is the $$f(x)=frac{cos(3x)e^{3x}-e^x}{ln(1+x)}$$
$endgroup$
– Dr. Sonnhard Graubner
Mar 20 at 12:29
7
7
$begingroup$
Please use mathjax for the formulas.
$endgroup$
– maxmilgram
Mar 20 at 12:33
$begingroup$
Please use mathjax for the formulas.
$endgroup$
– maxmilgram
Mar 20 at 12:33
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
$$frac{cos(3x)e^{3x}-e^x}{ln(1+x)}=frac{cos(3x)e^{3x}-e^x}{x}cdot frac{x}{ln(1+x)}.$$
The limits
$$ lim_{x to 0+}frac{cos(3x)e^{3x}-e^x}{x}$$
and
$$ lim_{x to 0+}frac{x}{ln(1+x)}$$
are easy to compute !
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155375%2fhow-can-i-know-the-derivability-of-this-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$frac{cos(3x)e^{3x}-e^x}{ln(1+x)}=frac{cos(3x)e^{3x}-e^x}{x}cdot frac{x}{ln(1+x)}.$$
The limits
$$ lim_{x to 0+}frac{cos(3x)e^{3x}-e^x}{x}$$
and
$$ lim_{x to 0+}frac{x}{ln(1+x)}$$
are easy to compute !
$endgroup$
add a comment |
$begingroup$
Hint:
$$frac{cos(3x)e^{3x}-e^x}{ln(1+x)}=frac{cos(3x)e^{3x}-e^x}{x}cdot frac{x}{ln(1+x)}.$$
The limits
$$ lim_{x to 0+}frac{cos(3x)e^{3x}-e^x}{x}$$
and
$$ lim_{x to 0+}frac{x}{ln(1+x)}$$
are easy to compute !
$endgroup$
add a comment |
$begingroup$
Hint:
$$frac{cos(3x)e^{3x}-e^x}{ln(1+x)}=frac{cos(3x)e^{3x}-e^x}{x}cdot frac{x}{ln(1+x)}.$$
The limits
$$ lim_{x to 0+}frac{cos(3x)e^{3x}-e^x}{x}$$
and
$$ lim_{x to 0+}frac{x}{ln(1+x)}$$
are easy to compute !
$endgroup$
Hint:
$$frac{cos(3x)e^{3x}-e^x}{ln(1+x)}=frac{cos(3x)e^{3x}-e^x}{x}cdot frac{x}{ln(1+x)}.$$
The limits
$$ lim_{x to 0+}frac{cos(3x)e^{3x}-e^x}{x}$$
and
$$ lim_{x to 0+}frac{x}{ln(1+x)}$$
are easy to compute !
answered Mar 20 at 12:44
FredFred
48.6k11849
48.6k11849
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155375%2fhow-can-i-know-the-derivability-of-this-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is the $$f(x)=frac{cos(3x)e^{3x}-e^x}{ln(1+x)}$$
$endgroup$
– Dr. Sonnhard Graubner
Mar 20 at 12:29
7
$begingroup$
Please use mathjax for the formulas.
$endgroup$
– maxmilgram
Mar 20 at 12:33