Calculate this integral using most elementary methods: $int arctan^2 x ,mathrm dx$How can I calculate $int...
How to distinguish easily different soldier of ww2?
Short story about cities being connected by a conveyor belt
Who has more? Ireland or Iceland?
What does *dead* mean in *What do you mean, dead?*?
What is the purpose of a disclaimer like "this is not legal advice"?
Do I need a return ticket to Canada if I'm a Japanese National?
Was this cameo in Captain Marvel computer generated?
Why restrict private health insurance?
Was it really inappropriate to write a pull request for the company I interviewed with?
If nine coins are tossed, what is the probability that the number of heads is even?
Has a sovereign Communist government ever run, and conceded loss, on a fair election?
Can I challenge the interviewer to give me a proper technical feedback?
Is it appropriate to ask a former professor to order a library book for me through ILL?
How does learning spells work when leveling a multiclass character?
How strong is the axiom of well-ordered choice?
Did Amazon pay $0 in taxes last year?
Precision notation for voltmeters
What is the oldest European royal house?
What can I do if someone tampers with my SSH public key?
How to make sure I'm assertive enough in contact with subordinates?
What the error in writing this equation by latex?
Should we avoid writing fiction about historical events without extensive research?
Use Mercury as quenching liquid for swords?
Rationale to prefer local variables over instance variables?
Calculate this integral using most elementary methods: $int arctan^2 x ,mathrm dx$
How can I calculate $int frac{sec xtan x}{3x+5},mathrm dx$Trying to calculate $displaystyleint e^{2x}sin(3x), mathrm{d}x$How find this integral $;intfrac{sqrt{ln{(x+sqrt{x^2+1})}}}{1+x^2}dx$Solve this integral:$int_0^inftyfrac{arctan x}{x(x^2+1)}mathrm dx$Some help to solve this integral: $displaystyleint bigg(cosBig(arctanbig(sinleft(text{arccot}(x)right)big)Big)bigg)^2 text{d}x$Alternative methods for finding antiderivative of $frac x{(1+sin x)^2}$Integral $int frac{mathrm{d}x}{sin x+sec x}$How can I evaluate the following integral? $int(sqrt{x}-x)(e^{arctansqrt{x}})^2dx$Problem with calculation this integral: $int_0^pi frac{dx}{1+3sin^2x}$[Integral][Please identify problem] $displaystyleint cfrac{1}{1+x^4}>mathrm{d} x$
$begingroup$
My attempt:
$$int arctan^2x ,mathrm dx=arctan xleft(x arctan x-dfrac{ln|1+x^2|}{2}right)-intdfrac{left(x arctan x-frac{ln|1+x^2|}{2}right)}{1+x^2},mathrm dx$$
I tried calculating this first
$$displaystyleintdfrac{xarctan x}{1+x^2}dx$$
For this last integral, let $u=arctan x, mathrm dx=mathrm du(1+x^2)$ , then
$$intdfrac{xarctan x}{1+x^2},mathrm dx=displaystyleint utan u,mathrm du$$
For $displaystyleint utan u,mathrm du$ first try:
$$displaystyleint utan u,mathrm du=-uln|cos u|+displaystyleint ln|cos u|,mathrm du$$
I couldn't do anything with this integral (only tried $tan(u/2)=j$).
For $displaystyleint utan u ,mathrm du$ second try:
$$displaystyleint utan u ,mathrm du=frac{u^2}{2}tan u-dfrac12displaystyleint u^2sec^2u ,mathrm du$$
Then we clearly see, we have nothing.
And... I couldn't even calculate $dfrac12displaystyleintdfrac{ln|1+x^2|}{1+x^2},mathrm dx$
integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
My attempt:
$$int arctan^2x ,mathrm dx=arctan xleft(x arctan x-dfrac{ln|1+x^2|}{2}right)-intdfrac{left(x arctan x-frac{ln|1+x^2|}{2}right)}{1+x^2},mathrm dx$$
I tried calculating this first
$$displaystyleintdfrac{xarctan x}{1+x^2}dx$$
For this last integral, let $u=arctan x, mathrm dx=mathrm du(1+x^2)$ , then
$$intdfrac{xarctan x}{1+x^2},mathrm dx=displaystyleint utan u,mathrm du$$
For $displaystyleint utan u,mathrm du$ first try:
$$displaystyleint utan u,mathrm du=-uln|cos u|+displaystyleint ln|cos u|,mathrm du$$
I couldn't do anything with this integral (only tried $tan(u/2)=j$).
For $displaystyleint utan u ,mathrm du$ second try:
$$displaystyleint utan u ,mathrm du=frac{u^2}{2}tan u-dfrac12displaystyleint u^2sec^2u ,mathrm du$$
Then we clearly see, we have nothing.
And... I couldn't even calculate $dfrac12displaystyleintdfrac{ln|1+x^2|}{1+x^2},mathrm dx$
integration indefinite-integrals
$endgroup$
1
$begingroup$
It is not an elementary integral, it is related with $text{Li}_2(x)$ and the Clausen function: en.wikipedia.org/wiki/Clausen_function
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:38
2
$begingroup$
However, many definite integrals over peculiar intervals have nice closed forms due to some reflection formulas. For instance, $$int_{0}^{1}arctan^2(x),dx = -K+frac{pi^2}{16}+frac{pilog 2}{4}.$$
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:41
add a comment |
$begingroup$
My attempt:
$$int arctan^2x ,mathrm dx=arctan xleft(x arctan x-dfrac{ln|1+x^2|}{2}right)-intdfrac{left(x arctan x-frac{ln|1+x^2|}{2}right)}{1+x^2},mathrm dx$$
I tried calculating this first
$$displaystyleintdfrac{xarctan x}{1+x^2}dx$$
For this last integral, let $u=arctan x, mathrm dx=mathrm du(1+x^2)$ , then
$$intdfrac{xarctan x}{1+x^2},mathrm dx=displaystyleint utan u,mathrm du$$
For $displaystyleint utan u,mathrm du$ first try:
$$displaystyleint utan u,mathrm du=-uln|cos u|+displaystyleint ln|cos u|,mathrm du$$
I couldn't do anything with this integral (only tried $tan(u/2)=j$).
For $displaystyleint utan u ,mathrm du$ second try:
$$displaystyleint utan u ,mathrm du=frac{u^2}{2}tan u-dfrac12displaystyleint u^2sec^2u ,mathrm du$$
Then we clearly see, we have nothing.
And... I couldn't even calculate $dfrac12displaystyleintdfrac{ln|1+x^2|}{1+x^2},mathrm dx$
integration indefinite-integrals
$endgroup$
My attempt:
$$int arctan^2x ,mathrm dx=arctan xleft(x arctan x-dfrac{ln|1+x^2|}{2}right)-intdfrac{left(x arctan x-frac{ln|1+x^2|}{2}right)}{1+x^2},mathrm dx$$
I tried calculating this first
$$displaystyleintdfrac{xarctan x}{1+x^2}dx$$
For this last integral, let $u=arctan x, mathrm dx=mathrm du(1+x^2)$ , then
$$intdfrac{xarctan x}{1+x^2},mathrm dx=displaystyleint utan u,mathrm du$$
For $displaystyleint utan u,mathrm du$ first try:
$$displaystyleint utan u,mathrm du=-uln|cos u|+displaystyleint ln|cos u|,mathrm du$$
I couldn't do anything with this integral (only tried $tan(u/2)=j$).
For $displaystyleint utan u ,mathrm du$ second try:
$$displaystyleint utan u ,mathrm du=frac{u^2}{2}tan u-dfrac12displaystyleint u^2sec^2u ,mathrm du$$
Then we clearly see, we have nothing.
And... I couldn't even calculate $dfrac12displaystyleintdfrac{ln|1+x^2|}{1+x^2},mathrm dx$
integration indefinite-integrals
integration indefinite-integrals
edited Sep 30 '16 at 14:56
j___d
1,2062623
1,2062623
asked Sep 29 '16 at 21:20
user2312512851user2312512851
1,192521
1,192521
1
$begingroup$
It is not an elementary integral, it is related with $text{Li}_2(x)$ and the Clausen function: en.wikipedia.org/wiki/Clausen_function
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:38
2
$begingroup$
However, many definite integrals over peculiar intervals have nice closed forms due to some reflection formulas. For instance, $$int_{0}^{1}arctan^2(x),dx = -K+frac{pi^2}{16}+frac{pilog 2}{4}.$$
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:41
add a comment |
1
$begingroup$
It is not an elementary integral, it is related with $text{Li}_2(x)$ and the Clausen function: en.wikipedia.org/wiki/Clausen_function
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:38
2
$begingroup$
However, many definite integrals over peculiar intervals have nice closed forms due to some reflection formulas. For instance, $$int_{0}^{1}arctan^2(x),dx = -K+frac{pi^2}{16}+frac{pilog 2}{4}.$$
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:41
1
1
$begingroup$
It is not an elementary integral, it is related with $text{Li}_2(x)$ and the Clausen function: en.wikipedia.org/wiki/Clausen_function
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:38
$begingroup$
It is not an elementary integral, it is related with $text{Li}_2(x)$ and the Clausen function: en.wikipedia.org/wiki/Clausen_function
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:38
2
2
$begingroup$
However, many definite integrals over peculiar intervals have nice closed forms due to some reflection formulas. For instance, $$int_{0}^{1}arctan^2(x),dx = -K+frac{pi^2}{16}+frac{pilog 2}{4}.$$
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:41
$begingroup$
However, many definite integrals over peculiar intervals have nice closed forms due to some reflection formulas. For instance, $$int_{0}^{1}arctan^2(x),dx = -K+frac{pi^2}{16}+frac{pilog 2}{4}.$$
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Write the arc tangent using logarithms to get:
$$I:= int arctan^2x ,mathrm d x=-frac 14int left( ln (1+xi)-ln(1-xi)right)^2,mathrm d x=\
int ln^2(1+xi),mathrm dx-2int ln (1-xi)ln(1+xi),mathrm d x+int ln^2(1-xi),mathrm d x
$$
The first integral can be solved by substituting $u=1+xi$ and then integrating by parts:
$$I_1:=int ln^2(1+xi),mathrm dx=-iintln^2(u)=-ileft(2int ln u,mathrm d u+uln^2uright)=-ileft( uln^2u-2uln u+2uright)=boxed{-iuln^2u+2iuln u-2iu}$$
The third integral is a bit more difficult but similar - substitute $u=-1+xi$, $v=ln u$ and then integrate by parts twice to get the result:
$$I_3:=ln^2(1-xi),mathrm d x=-iint(ln u+ln(-1))^2,mathrm d u=-iint e^v(v+pi i)^2 ,mathrm d v=\
2iint e^v(v+pi i),mathrm d v-ie^v(v+pi i)=boxed{-ie^vleft((v+pi i)^2-2(v+pi i)+2right)}$$
The second integral however is much trickier and messier. First, integrate by parts:
$$-2I_2:=-2intln(1-xi)ln(1+xi),mathrm d x \
I_2=intln(1-xi)ln(1+xi),mathrm d x=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x-\
i(1+xi)ln(1-xi)left( ln(1+xi)-1right)
$$
$$-J:=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x$$
Expand:
$$J=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x-intfrac{x}{x+i},mathrm dx+iintfrac{1}{x+i},mathrm dx=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x+\
(1-i)(ln(x+i))+x$$
Subsitute $u=x+i$ and expand again:
$$K:= intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x =intfrac{(u-2i)left( ln(u-2i)+fracpi 2 iright)}{u},mathrm d u=\
-2iintfrac{ln(u-2i)}{u},mathrm d u+intln(u-2i),mathrm d u-piln u+fracpi 2 iu
$$
The second integral is solved immediately after substituting $v=u-2i$:
$$K_2:=intln(u-2i),mathrm d u=vln v-v=(u-2i)ln(u-2i)-u+2i$$
To solve the first one we can rewrite the integrand:
$$-2iK_1:=-2iintfrac{ln(u-2i)}{u},mathrm d u \
K_1=int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u+left( log 2-frac{pi}{2}iright)(ln u)$$
and now substitute $v=-frac i2 u$ to finish by seeing that the integral is a dilogarithm:
$$int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u=-int -frac{ln(1-v)}{v},mathrm d v=-mathrm{Li}_2 (v)=-mathrm{Li}_2left( -frac{i}{2}uright)$$
And thus our integral is solved. Plug in all the previously solved integrals and undo the substitutions to get the final, messy result which I won't be writing out here.
$endgroup$
add a comment |
$begingroup$
Let $xin {mathbb R}$ then integrating by parts we have:
begin{eqnarray}
int arctan(x)^2 dx =x arctan(x)^2 - log(1+x^2) arctan(x) + frac{1}{(2 imath) }sumlimits_{xiin{-1,1}} xi left( log(imath xi+ x) log(frac{1}{2}(1+imath xi x))+ Li_2(frac{1}{2}(1-imath xi x)) - frac{1}{2} log(x+ imath xi)^2right) quad (i)
end{eqnarray}
In[1023]:= (*Integrate[Log[1+x^2]/(1+x^2],x]*)
f[x_] := 1/(2 I) Sum[
xi (Log[I xi + x] Log[1/2 (1 + I xi x)] +
PolyLog[2, 1/2 (1 - I xi x)] - 1/2 Log[x + I xi]^2), {xi, -1,
1, 2}];
D[x ArcTan[x]^2 - Log[1 + x^2] ArcTan[x] + f[x], x] // Simplify
Out[1024]= ((1 + x^2) ArcTan[x]^2 + Log[-I + x] + Log[I + x] -
Log[1 + x^2])/(1 + x^2)
Therefore for example:
begin{equation}
intlimits_{-1}^1 arctan(x)^2 dx = frac{1}{8} (pi (pi +log (16))-16 C)
end{equation}
where $C$ is the Catalan constant.
Now having said all this if $x$ is complex things get much more complicated since, firstly $log(x+imath) + log(x-imath) neq log(1+x^2)$ and secondly the quantitities in the right hand side in $(i)$ can be discontinuous and therefore we need to compute any definite integrals by avoiding discontinuities, i.e. as a principal value.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1947126%2fcalculate-this-integral-using-most-elementary-methods-int-arctan2-x-math%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write the arc tangent using logarithms to get:
$$I:= int arctan^2x ,mathrm d x=-frac 14int left( ln (1+xi)-ln(1-xi)right)^2,mathrm d x=\
int ln^2(1+xi),mathrm dx-2int ln (1-xi)ln(1+xi),mathrm d x+int ln^2(1-xi),mathrm d x
$$
The first integral can be solved by substituting $u=1+xi$ and then integrating by parts:
$$I_1:=int ln^2(1+xi),mathrm dx=-iintln^2(u)=-ileft(2int ln u,mathrm d u+uln^2uright)=-ileft( uln^2u-2uln u+2uright)=boxed{-iuln^2u+2iuln u-2iu}$$
The third integral is a bit more difficult but similar - substitute $u=-1+xi$, $v=ln u$ and then integrate by parts twice to get the result:
$$I_3:=ln^2(1-xi),mathrm d x=-iint(ln u+ln(-1))^2,mathrm d u=-iint e^v(v+pi i)^2 ,mathrm d v=\
2iint e^v(v+pi i),mathrm d v-ie^v(v+pi i)=boxed{-ie^vleft((v+pi i)^2-2(v+pi i)+2right)}$$
The second integral however is much trickier and messier. First, integrate by parts:
$$-2I_2:=-2intln(1-xi)ln(1+xi),mathrm d x \
I_2=intln(1-xi)ln(1+xi),mathrm d x=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x-\
i(1+xi)ln(1-xi)left( ln(1+xi)-1right)
$$
$$-J:=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x$$
Expand:
$$J=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x-intfrac{x}{x+i},mathrm dx+iintfrac{1}{x+i},mathrm dx=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x+\
(1-i)(ln(x+i))+x$$
Subsitute $u=x+i$ and expand again:
$$K:= intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x =intfrac{(u-2i)left( ln(u-2i)+fracpi 2 iright)}{u},mathrm d u=\
-2iintfrac{ln(u-2i)}{u},mathrm d u+intln(u-2i),mathrm d u-piln u+fracpi 2 iu
$$
The second integral is solved immediately after substituting $v=u-2i$:
$$K_2:=intln(u-2i),mathrm d u=vln v-v=(u-2i)ln(u-2i)-u+2i$$
To solve the first one we can rewrite the integrand:
$$-2iK_1:=-2iintfrac{ln(u-2i)}{u},mathrm d u \
K_1=int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u+left( log 2-frac{pi}{2}iright)(ln u)$$
and now substitute $v=-frac i2 u$ to finish by seeing that the integral is a dilogarithm:
$$int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u=-int -frac{ln(1-v)}{v},mathrm d v=-mathrm{Li}_2 (v)=-mathrm{Li}_2left( -frac{i}{2}uright)$$
And thus our integral is solved. Plug in all the previously solved integrals and undo the substitutions to get the final, messy result which I won't be writing out here.
$endgroup$
add a comment |
$begingroup$
Write the arc tangent using logarithms to get:
$$I:= int arctan^2x ,mathrm d x=-frac 14int left( ln (1+xi)-ln(1-xi)right)^2,mathrm d x=\
int ln^2(1+xi),mathrm dx-2int ln (1-xi)ln(1+xi),mathrm d x+int ln^2(1-xi),mathrm d x
$$
The first integral can be solved by substituting $u=1+xi$ and then integrating by parts:
$$I_1:=int ln^2(1+xi),mathrm dx=-iintln^2(u)=-ileft(2int ln u,mathrm d u+uln^2uright)=-ileft( uln^2u-2uln u+2uright)=boxed{-iuln^2u+2iuln u-2iu}$$
The third integral is a bit more difficult but similar - substitute $u=-1+xi$, $v=ln u$ and then integrate by parts twice to get the result:
$$I_3:=ln^2(1-xi),mathrm d x=-iint(ln u+ln(-1))^2,mathrm d u=-iint e^v(v+pi i)^2 ,mathrm d v=\
2iint e^v(v+pi i),mathrm d v-ie^v(v+pi i)=boxed{-ie^vleft((v+pi i)^2-2(v+pi i)+2right)}$$
The second integral however is much trickier and messier. First, integrate by parts:
$$-2I_2:=-2intln(1-xi)ln(1+xi),mathrm d x \
I_2=intln(1-xi)ln(1+xi),mathrm d x=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x-\
i(1+xi)ln(1-xi)left( ln(1+xi)-1right)
$$
$$-J:=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x$$
Expand:
$$J=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x-intfrac{x}{x+i},mathrm dx+iintfrac{1}{x+i},mathrm dx=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x+\
(1-i)(ln(x+i))+x$$
Subsitute $u=x+i$ and expand again:
$$K:= intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x =intfrac{(u-2i)left( ln(u-2i)+fracpi 2 iright)}{u},mathrm d u=\
-2iintfrac{ln(u-2i)}{u},mathrm d u+intln(u-2i),mathrm d u-piln u+fracpi 2 iu
$$
The second integral is solved immediately after substituting $v=u-2i$:
$$K_2:=intln(u-2i),mathrm d u=vln v-v=(u-2i)ln(u-2i)-u+2i$$
To solve the first one we can rewrite the integrand:
$$-2iK_1:=-2iintfrac{ln(u-2i)}{u},mathrm d u \
K_1=int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u+left( log 2-frac{pi}{2}iright)(ln u)$$
and now substitute $v=-frac i2 u$ to finish by seeing that the integral is a dilogarithm:
$$int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u=-int -frac{ln(1-v)}{v},mathrm d v=-mathrm{Li}_2 (v)=-mathrm{Li}_2left( -frac{i}{2}uright)$$
And thus our integral is solved. Plug in all the previously solved integrals and undo the substitutions to get the final, messy result which I won't be writing out here.
$endgroup$
add a comment |
$begingroup$
Write the arc tangent using logarithms to get:
$$I:= int arctan^2x ,mathrm d x=-frac 14int left( ln (1+xi)-ln(1-xi)right)^2,mathrm d x=\
int ln^2(1+xi),mathrm dx-2int ln (1-xi)ln(1+xi),mathrm d x+int ln^2(1-xi),mathrm d x
$$
The first integral can be solved by substituting $u=1+xi$ and then integrating by parts:
$$I_1:=int ln^2(1+xi),mathrm dx=-iintln^2(u)=-ileft(2int ln u,mathrm d u+uln^2uright)=-ileft( uln^2u-2uln u+2uright)=boxed{-iuln^2u+2iuln u-2iu}$$
The third integral is a bit more difficult but similar - substitute $u=-1+xi$, $v=ln u$ and then integrate by parts twice to get the result:
$$I_3:=ln^2(1-xi),mathrm d x=-iint(ln u+ln(-1))^2,mathrm d u=-iint e^v(v+pi i)^2 ,mathrm d v=\
2iint e^v(v+pi i),mathrm d v-ie^v(v+pi i)=boxed{-ie^vleft((v+pi i)^2-2(v+pi i)+2right)}$$
The second integral however is much trickier and messier. First, integrate by parts:
$$-2I_2:=-2intln(1-xi)ln(1+xi),mathrm d x \
I_2=intln(1-xi)ln(1+xi),mathrm d x=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x-\
i(1+xi)ln(1-xi)left( ln(1+xi)-1right)
$$
$$-J:=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x$$
Expand:
$$J=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x-intfrac{x}{x+i},mathrm dx+iintfrac{1}{x+i},mathrm dx=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x+\
(1-i)(ln(x+i))+x$$
Subsitute $u=x+i$ and expand again:
$$K:= intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x =intfrac{(u-2i)left( ln(u-2i)+fracpi 2 iright)}{u},mathrm d u=\
-2iintfrac{ln(u-2i)}{u},mathrm d u+intln(u-2i),mathrm d u-piln u+fracpi 2 iu
$$
The second integral is solved immediately after substituting $v=u-2i$:
$$K_2:=intln(u-2i),mathrm d u=vln v-v=(u-2i)ln(u-2i)-u+2i$$
To solve the first one we can rewrite the integrand:
$$-2iK_1:=-2iintfrac{ln(u-2i)}{u},mathrm d u \
K_1=int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u+left( log 2-frac{pi}{2}iright)(ln u)$$
and now substitute $v=-frac i2 u$ to finish by seeing that the integral is a dilogarithm:
$$int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u=-int -frac{ln(1-v)}{v},mathrm d v=-mathrm{Li}_2 (v)=-mathrm{Li}_2left( -frac{i}{2}uright)$$
And thus our integral is solved. Plug in all the previously solved integrals and undo the substitutions to get the final, messy result which I won't be writing out here.
$endgroup$
Write the arc tangent using logarithms to get:
$$I:= int arctan^2x ,mathrm d x=-frac 14int left( ln (1+xi)-ln(1-xi)right)^2,mathrm d x=\
int ln^2(1+xi),mathrm dx-2int ln (1-xi)ln(1+xi),mathrm d x+int ln^2(1-xi),mathrm d x
$$
The first integral can be solved by substituting $u=1+xi$ and then integrating by parts:
$$I_1:=int ln^2(1+xi),mathrm dx=-iintln^2(u)=-ileft(2int ln u,mathrm d u+uln^2uright)=-ileft( uln^2u-2uln u+2uright)=boxed{-iuln^2u+2iuln u-2iu}$$
The third integral is a bit more difficult but similar - substitute $u=-1+xi$, $v=ln u$ and then integrate by parts twice to get the result:
$$I_3:=ln^2(1-xi),mathrm d x=-iint(ln u+ln(-1))^2,mathrm d u=-iint e^v(v+pi i)^2 ,mathrm d v=\
2iint e^v(v+pi i),mathrm d v-ie^v(v+pi i)=boxed{-ie^vleft((v+pi i)^2-2(v+pi i)+2right)}$$
The second integral however is much trickier and messier. First, integrate by parts:
$$-2I_2:=-2intln(1-xi)ln(1+xi),mathrm d x \
I_2=intln(1-xi)ln(1+xi),mathrm d x=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x-\
i(1+xi)ln(1-xi)left( ln(1+xi)-1right)
$$
$$-J:=-intfrac{(x-i)ln(1+xi)-x+i}{x+i},mathrm d x$$
Expand:
$$J=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x-intfrac{x}{x+i},mathrm dx+iintfrac{1}{x+i},mathrm dx=intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x+\
(1-i)(ln(x+i))+x$$
Subsitute $u=x+i$ and expand again:
$$K:= intfrac{(x-i)ln(1+xi)}{x+i},mathrm d x =intfrac{(u-2i)left( ln(u-2i)+fracpi 2 iright)}{u},mathrm d u=\
-2iintfrac{ln(u-2i)}{u},mathrm d u+intln(u-2i),mathrm d u-piln u+fracpi 2 iu
$$
The second integral is solved immediately after substituting $v=u-2i$:
$$K_2:=intln(u-2i),mathrm d u=vln v-v=(u-2i)ln(u-2i)-u+2i$$
To solve the first one we can rewrite the integrand:
$$-2iK_1:=-2iintfrac{ln(u-2i)}{u},mathrm d u \
K_1=int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u+left( log 2-frac{pi}{2}iright)(ln u)$$
and now substitute $v=-frac i2 u$ to finish by seeing that the integral is a dilogarithm:
$$int frac{lnleft( frac{i}{2}u+1right)}{u},mathrm d u=-int -frac{ln(1-v)}{v},mathrm d v=-mathrm{Li}_2 (v)=-mathrm{Li}_2left( -frac{i}{2}uright)$$
And thus our integral is solved. Plug in all the previously solved integrals and undo the substitutions to get the final, messy result which I won't be writing out here.
answered Sep 30 '16 at 15:57
j___dj___d
1,2062623
1,2062623
add a comment |
add a comment |
$begingroup$
Let $xin {mathbb R}$ then integrating by parts we have:
begin{eqnarray}
int arctan(x)^2 dx =x arctan(x)^2 - log(1+x^2) arctan(x) + frac{1}{(2 imath) }sumlimits_{xiin{-1,1}} xi left( log(imath xi+ x) log(frac{1}{2}(1+imath xi x))+ Li_2(frac{1}{2}(1-imath xi x)) - frac{1}{2} log(x+ imath xi)^2right) quad (i)
end{eqnarray}
In[1023]:= (*Integrate[Log[1+x^2]/(1+x^2],x]*)
f[x_] := 1/(2 I) Sum[
xi (Log[I xi + x] Log[1/2 (1 + I xi x)] +
PolyLog[2, 1/2 (1 - I xi x)] - 1/2 Log[x + I xi]^2), {xi, -1,
1, 2}];
D[x ArcTan[x]^2 - Log[1 + x^2] ArcTan[x] + f[x], x] // Simplify
Out[1024]= ((1 + x^2) ArcTan[x]^2 + Log[-I + x] + Log[I + x] -
Log[1 + x^2])/(1 + x^2)
Therefore for example:
begin{equation}
intlimits_{-1}^1 arctan(x)^2 dx = frac{1}{8} (pi (pi +log (16))-16 C)
end{equation}
where $C$ is the Catalan constant.
Now having said all this if $x$ is complex things get much more complicated since, firstly $log(x+imath) + log(x-imath) neq log(1+x^2)$ and secondly the quantitities in the right hand side in $(i)$ can be discontinuous and therefore we need to compute any definite integrals by avoiding discontinuities, i.e. as a principal value.
$endgroup$
add a comment |
$begingroup$
Let $xin {mathbb R}$ then integrating by parts we have:
begin{eqnarray}
int arctan(x)^2 dx =x arctan(x)^2 - log(1+x^2) arctan(x) + frac{1}{(2 imath) }sumlimits_{xiin{-1,1}} xi left( log(imath xi+ x) log(frac{1}{2}(1+imath xi x))+ Li_2(frac{1}{2}(1-imath xi x)) - frac{1}{2} log(x+ imath xi)^2right) quad (i)
end{eqnarray}
In[1023]:= (*Integrate[Log[1+x^2]/(1+x^2],x]*)
f[x_] := 1/(2 I) Sum[
xi (Log[I xi + x] Log[1/2 (1 + I xi x)] +
PolyLog[2, 1/2 (1 - I xi x)] - 1/2 Log[x + I xi]^2), {xi, -1,
1, 2}];
D[x ArcTan[x]^2 - Log[1 + x^2] ArcTan[x] + f[x], x] // Simplify
Out[1024]= ((1 + x^2) ArcTan[x]^2 + Log[-I + x] + Log[I + x] -
Log[1 + x^2])/(1 + x^2)
Therefore for example:
begin{equation}
intlimits_{-1}^1 arctan(x)^2 dx = frac{1}{8} (pi (pi +log (16))-16 C)
end{equation}
where $C$ is the Catalan constant.
Now having said all this if $x$ is complex things get much more complicated since, firstly $log(x+imath) + log(x-imath) neq log(1+x^2)$ and secondly the quantitities in the right hand side in $(i)$ can be discontinuous and therefore we need to compute any definite integrals by avoiding discontinuities, i.e. as a principal value.
$endgroup$
add a comment |
$begingroup$
Let $xin {mathbb R}$ then integrating by parts we have:
begin{eqnarray}
int arctan(x)^2 dx =x arctan(x)^2 - log(1+x^2) arctan(x) + frac{1}{(2 imath) }sumlimits_{xiin{-1,1}} xi left( log(imath xi+ x) log(frac{1}{2}(1+imath xi x))+ Li_2(frac{1}{2}(1-imath xi x)) - frac{1}{2} log(x+ imath xi)^2right) quad (i)
end{eqnarray}
In[1023]:= (*Integrate[Log[1+x^2]/(1+x^2],x]*)
f[x_] := 1/(2 I) Sum[
xi (Log[I xi + x] Log[1/2 (1 + I xi x)] +
PolyLog[2, 1/2 (1 - I xi x)] - 1/2 Log[x + I xi]^2), {xi, -1,
1, 2}];
D[x ArcTan[x]^2 - Log[1 + x^2] ArcTan[x] + f[x], x] // Simplify
Out[1024]= ((1 + x^2) ArcTan[x]^2 + Log[-I + x] + Log[I + x] -
Log[1 + x^2])/(1 + x^2)
Therefore for example:
begin{equation}
intlimits_{-1}^1 arctan(x)^2 dx = frac{1}{8} (pi (pi +log (16))-16 C)
end{equation}
where $C$ is the Catalan constant.
Now having said all this if $x$ is complex things get much more complicated since, firstly $log(x+imath) + log(x-imath) neq log(1+x^2)$ and secondly the quantitities in the right hand side in $(i)$ can be discontinuous and therefore we need to compute any definite integrals by avoiding discontinuities, i.e. as a principal value.
$endgroup$
Let $xin {mathbb R}$ then integrating by parts we have:
begin{eqnarray}
int arctan(x)^2 dx =x arctan(x)^2 - log(1+x^2) arctan(x) + frac{1}{(2 imath) }sumlimits_{xiin{-1,1}} xi left( log(imath xi+ x) log(frac{1}{2}(1+imath xi x))+ Li_2(frac{1}{2}(1-imath xi x)) - frac{1}{2} log(x+ imath xi)^2right) quad (i)
end{eqnarray}
In[1023]:= (*Integrate[Log[1+x^2]/(1+x^2],x]*)
f[x_] := 1/(2 I) Sum[
xi (Log[I xi + x] Log[1/2 (1 + I xi x)] +
PolyLog[2, 1/2 (1 - I xi x)] - 1/2 Log[x + I xi]^2), {xi, -1,
1, 2}];
D[x ArcTan[x]^2 - Log[1 + x^2] ArcTan[x] + f[x], x] // Simplify
Out[1024]= ((1 + x^2) ArcTan[x]^2 + Log[-I + x] + Log[I + x] -
Log[1 + x^2])/(1 + x^2)
Therefore for example:
begin{equation}
intlimits_{-1}^1 arctan(x)^2 dx = frac{1}{8} (pi (pi +log (16))-16 C)
end{equation}
where $C$ is the Catalan constant.
Now having said all this if $x$ is complex things get much more complicated since, firstly $log(x+imath) + log(x-imath) neq log(1+x^2)$ and secondly the quantitities in the right hand side in $(i)$ can be discontinuous and therefore we need to compute any definite integrals by avoiding discontinuities, i.e. as a principal value.
answered yesterday
PrzemoPrzemo
4,39311031
4,39311031
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1947126%2fcalculate-this-integral-using-most-elementary-methods-int-arctan2-x-math%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It is not an elementary integral, it is related with $text{Li}_2(x)$ and the Clausen function: en.wikipedia.org/wiki/Clausen_function
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:38
2
$begingroup$
However, many definite integrals over peculiar intervals have nice closed forms due to some reflection formulas. For instance, $$int_{0}^{1}arctan^2(x),dx = -K+frac{pi^2}{16}+frac{pilog 2}{4}.$$
$endgroup$
– Jack D'Aurizio
Sep 29 '16 at 21:41