Mathematical induction - recursionProve the inequality $n! geq 2^n$ by inductionReason behind particular...
What is the offset in a seaplane's hull?
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
How to type dʒ symbol (IPA) on Mac?
What defenses are there against being summoned by the Gate spell?
A function which translates a sentence to title-case
If Manufacturer spice model and Datasheet give different values which should I use?
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
What would the Romans have called "sorcery"?
Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?
Can I interfere when another PC is about to be attacked?
What do you call a Matrix-like slowdown and camera movement effect?
What are these boxed doors outside store fronts in New York?
How to calculate implied correlation via observed market price (Margrabe option)
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
Can a German sentence have two subjects?
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
How to make payment on the internet without leaving a money trail?
whey we use polarized capacitor?
Example of a relative pronoun
How can I fix this gap between bookcases I made?
Chess with symmetric move-square
What Brexit solution does the DUP want?
Why don't electron-positron collisions release infinite energy?
Circuitry of TV splitters
Mathematical induction - recursion
Prove the inequality $n! geq 2^n$ by inductionReason behind particular induction stepMathematical induction for inequalities with a constant at the right sideApplications of mathematical inductionMathematical induction--When it can and can't be usedHow have they done the algebra here?In-Depth Explanation of How to Do Mathematical Induction Over the Set $mathbb{R}$ of All Real Numbers?Interpretation of 2 proofs involving limits at infinity and mathematical inductionShow that an inequality is true using mathematical induction and the mean value theoremOn Assumptions In Induction
$begingroup$
I am struggling with that exercise... i don't understand a step in the answer. Maybe somebody Can explain in here or at least give me a hint what's going on there.
$a_{n} = frac{7*(n+2)}{2*n} *a_{n-1}$ ,$a_{1} = 14$
So it's...
$a_{2} = frac{7*4}{4} * a_{1} = frac{7*4 * 14}{4} = frac{2* 7^{2}*4 }{4}$
$a_{3} = frac{7*5}{6} * a_{2} = frac{2* 7^{3}*4*5 }{4*6}$
And here is the problem...
a4 equals:
$a_{4} = frac{7*6}{8} * a_{3} = frac{2* 7^{4}*4*5*6 }{4*6*8}$
We are multiplying numerator and denominator with 2*3 to get factorial 6! on numerator. I can't understand how the
$(1*2*3)^2$ got on denominator and how after that we transformed it to $3! * 4!$. Next steps are quite easy and the mathematical induction is fully understandable for me.
$a_{4} = frac{2* 7^{4}*6! }{ (1*2*3)^{2} * 2 *3 *4 } = frac{2* 7^{4}*6! }{ 3! 4! }$
Full answer of the exercise: JPG image
induction recursion
$endgroup$
add a comment |
$begingroup$
I am struggling with that exercise... i don't understand a step in the answer. Maybe somebody Can explain in here or at least give me a hint what's going on there.
$a_{n} = frac{7*(n+2)}{2*n} *a_{n-1}$ ,$a_{1} = 14$
So it's...
$a_{2} = frac{7*4}{4} * a_{1} = frac{7*4 * 14}{4} = frac{2* 7^{2}*4 }{4}$
$a_{3} = frac{7*5}{6} * a_{2} = frac{2* 7^{3}*4*5 }{4*6}$
And here is the problem...
a4 equals:
$a_{4} = frac{7*6}{8} * a_{3} = frac{2* 7^{4}*4*5*6 }{4*6*8}$
We are multiplying numerator and denominator with 2*3 to get factorial 6! on numerator. I can't understand how the
$(1*2*3)^2$ got on denominator and how after that we transformed it to $3! * 4!$. Next steps are quite easy and the mathematical induction is fully understandable for me.
$a_{4} = frac{2* 7^{4}*6! }{ (1*2*3)^{2} * 2 *3 *4 } = frac{2* 7^{4}*6! }{ 3! 4! }$
Full answer of the exercise: JPG image
induction recursion
$endgroup$
add a comment |
$begingroup$
I am struggling with that exercise... i don't understand a step in the answer. Maybe somebody Can explain in here or at least give me a hint what's going on there.
$a_{n} = frac{7*(n+2)}{2*n} *a_{n-1}$ ,$a_{1} = 14$
So it's...
$a_{2} = frac{7*4}{4} * a_{1} = frac{7*4 * 14}{4} = frac{2* 7^{2}*4 }{4}$
$a_{3} = frac{7*5}{6} * a_{2} = frac{2* 7^{3}*4*5 }{4*6}$
And here is the problem...
a4 equals:
$a_{4} = frac{7*6}{8} * a_{3} = frac{2* 7^{4}*4*5*6 }{4*6*8}$
We are multiplying numerator and denominator with 2*3 to get factorial 6! on numerator. I can't understand how the
$(1*2*3)^2$ got on denominator and how after that we transformed it to $3! * 4!$. Next steps are quite easy and the mathematical induction is fully understandable for me.
$a_{4} = frac{2* 7^{4}*6! }{ (1*2*3)^{2} * 2 *3 *4 } = frac{2* 7^{4}*6! }{ 3! 4! }$
Full answer of the exercise: JPG image
induction recursion
$endgroup$
I am struggling with that exercise... i don't understand a step in the answer. Maybe somebody Can explain in here or at least give me a hint what's going on there.
$a_{n} = frac{7*(n+2)}{2*n} *a_{n-1}$ ,$a_{1} = 14$
So it's...
$a_{2} = frac{7*4}{4} * a_{1} = frac{7*4 * 14}{4} = frac{2* 7^{2}*4 }{4}$
$a_{3} = frac{7*5}{6} * a_{2} = frac{2* 7^{3}*4*5 }{4*6}$
And here is the problem...
a4 equals:
$a_{4} = frac{7*6}{8} * a_{3} = frac{2* 7^{4}*4*5*6 }{4*6*8}$
We are multiplying numerator and denominator with 2*3 to get factorial 6! on numerator. I can't understand how the
$(1*2*3)^2$ got on denominator and how after that we transformed it to $3! * 4!$. Next steps are quite easy and the mathematical induction is fully understandable for me.
$a_{4} = frac{2* 7^{4}*6! }{ (1*2*3)^{2} * 2 *3 *4 } = frac{2* 7^{4}*6! }{ 3! 4! }$
Full answer of the exercise: JPG image
induction recursion
induction recursion
asked Mar 20 at 12:14
Jim.DJim.D
31
31
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Your doubt is valid:
$$begin{align}a_{n}& = frac{7*(n+2)}{2*n} *a_{n-1}, a_1=14\
a_2&=frac{7*4}{4}*a_1=frac{2*7^2*4}{4}=frac{2*7^2*4!}{4!}\
a_3&=frac{7*5}{6}*a_2=frac{2*7^3*4*5}{4*6}=frac{7^3*5!}{2*3!*3!}\
a_4&=frac{7*6}{8}*a_3=frac{7^4*5!*6}{2*3!*3!*8}=frac{7^4*6!}{2^2*3!*4!}\
a_5&=frac{7*7}{10}*a_4=frac{7^5*6!*7}{2^2*3!*4!*10}=frac{7^5*7!}{2^3*3!*5!}\
vdots\
a_n&=frac{7^n*(n+2)!}{2^{n-2}*3!*n!},nge 1.end{align}$$
Verify:
$$begin{align}a_1&=frac{7^1*(1+2)!}{2^{1-2}*3!*1!}=14\
a_2&=frac{7^2*(2+2)!}{2^{2-2}*3!*2!}=2*7^2\
a_3&=frac{7^3*(3+2)!}{2^{3-2}*3!*3!}=frac{7^3*5!}{2*3!*3!}end{align}$$
$endgroup$
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
add a comment |
$begingroup$
I got $$a_n=frac{2}{3}frac{7^n}{2^n}(n+1)(n+2)$$
$endgroup$
add a comment |
$begingroup$
$$a_n=a_{n-r}cdotdfrac{7^r(n+2)(n+1)cdots(n-r+3)}{2^r n(n-1)cdots(n-r+1)}$$ $0le rle n-1$
For $rge2implies nge3$ $$a_n=a_{n-r}cdotleft(dfrac72right)^rdfrac{(n+2)(n+1)}{(n-r+2)(n-r+1)}$$
Set $r=n-1$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155370%2fmathematical-induction-recursion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your doubt is valid:
$$begin{align}a_{n}& = frac{7*(n+2)}{2*n} *a_{n-1}, a_1=14\
a_2&=frac{7*4}{4}*a_1=frac{2*7^2*4}{4}=frac{2*7^2*4!}{4!}\
a_3&=frac{7*5}{6}*a_2=frac{2*7^3*4*5}{4*6}=frac{7^3*5!}{2*3!*3!}\
a_4&=frac{7*6}{8}*a_3=frac{7^4*5!*6}{2*3!*3!*8}=frac{7^4*6!}{2^2*3!*4!}\
a_5&=frac{7*7}{10}*a_4=frac{7^5*6!*7}{2^2*3!*4!*10}=frac{7^5*7!}{2^3*3!*5!}\
vdots\
a_n&=frac{7^n*(n+2)!}{2^{n-2}*3!*n!},nge 1.end{align}$$
Verify:
$$begin{align}a_1&=frac{7^1*(1+2)!}{2^{1-2}*3!*1!}=14\
a_2&=frac{7^2*(2+2)!}{2^{2-2}*3!*2!}=2*7^2\
a_3&=frac{7^3*(3+2)!}{2^{3-2}*3!*3!}=frac{7^3*5!}{2*3!*3!}end{align}$$
$endgroup$
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
add a comment |
$begingroup$
Your doubt is valid:
$$begin{align}a_{n}& = frac{7*(n+2)}{2*n} *a_{n-1}, a_1=14\
a_2&=frac{7*4}{4}*a_1=frac{2*7^2*4}{4}=frac{2*7^2*4!}{4!}\
a_3&=frac{7*5}{6}*a_2=frac{2*7^3*4*5}{4*6}=frac{7^3*5!}{2*3!*3!}\
a_4&=frac{7*6}{8}*a_3=frac{7^4*5!*6}{2*3!*3!*8}=frac{7^4*6!}{2^2*3!*4!}\
a_5&=frac{7*7}{10}*a_4=frac{7^5*6!*7}{2^2*3!*4!*10}=frac{7^5*7!}{2^3*3!*5!}\
vdots\
a_n&=frac{7^n*(n+2)!}{2^{n-2}*3!*n!},nge 1.end{align}$$
Verify:
$$begin{align}a_1&=frac{7^1*(1+2)!}{2^{1-2}*3!*1!}=14\
a_2&=frac{7^2*(2+2)!}{2^{2-2}*3!*2!}=2*7^2\
a_3&=frac{7^3*(3+2)!}{2^{3-2}*3!*3!}=frac{7^3*5!}{2*3!*3!}end{align}$$
$endgroup$
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
add a comment |
$begingroup$
Your doubt is valid:
$$begin{align}a_{n}& = frac{7*(n+2)}{2*n} *a_{n-1}, a_1=14\
a_2&=frac{7*4}{4}*a_1=frac{2*7^2*4}{4}=frac{2*7^2*4!}{4!}\
a_3&=frac{7*5}{6}*a_2=frac{2*7^3*4*5}{4*6}=frac{7^3*5!}{2*3!*3!}\
a_4&=frac{7*6}{8}*a_3=frac{7^4*5!*6}{2*3!*3!*8}=frac{7^4*6!}{2^2*3!*4!}\
a_5&=frac{7*7}{10}*a_4=frac{7^5*6!*7}{2^2*3!*4!*10}=frac{7^5*7!}{2^3*3!*5!}\
vdots\
a_n&=frac{7^n*(n+2)!}{2^{n-2}*3!*n!},nge 1.end{align}$$
Verify:
$$begin{align}a_1&=frac{7^1*(1+2)!}{2^{1-2}*3!*1!}=14\
a_2&=frac{7^2*(2+2)!}{2^{2-2}*3!*2!}=2*7^2\
a_3&=frac{7^3*(3+2)!}{2^{3-2}*3!*3!}=frac{7^3*5!}{2*3!*3!}end{align}$$
$endgroup$
Your doubt is valid:
$$begin{align}a_{n}& = frac{7*(n+2)}{2*n} *a_{n-1}, a_1=14\
a_2&=frac{7*4}{4}*a_1=frac{2*7^2*4}{4}=frac{2*7^2*4!}{4!}\
a_3&=frac{7*5}{6}*a_2=frac{2*7^3*4*5}{4*6}=frac{7^3*5!}{2*3!*3!}\
a_4&=frac{7*6}{8}*a_3=frac{7^4*5!*6}{2*3!*3!*8}=frac{7^4*6!}{2^2*3!*4!}\
a_5&=frac{7*7}{10}*a_4=frac{7^5*6!*7}{2^2*3!*4!*10}=frac{7^5*7!}{2^3*3!*5!}\
vdots\
a_n&=frac{7^n*(n+2)!}{2^{n-2}*3!*n!},nge 1.end{align}$$
Verify:
$$begin{align}a_1&=frac{7^1*(1+2)!}{2^{1-2}*3!*1!}=14\
a_2&=frac{7^2*(2+2)!}{2^{2-2}*3!*2!}=2*7^2\
a_3&=frac{7^3*(3+2)!}{2^{3-2}*3!*3!}=frac{7^3*5!}{2*3!*3!}end{align}$$
answered Mar 20 at 13:20
farruhotafarruhota
21.8k2842
21.8k2842
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
add a comment |
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
Thank u a lot. Now is everything clear! Thanks once again :)
$endgroup$
– Jim.D
Mar 21 at 14:10
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
$begingroup$
You are welcome. If you think it answers your question, you can accept it. Good luck
$endgroup$
– farruhota
Mar 21 at 14:24
add a comment |
$begingroup$
I got $$a_n=frac{2}{3}frac{7^n}{2^n}(n+1)(n+2)$$
$endgroup$
add a comment |
$begingroup$
I got $$a_n=frac{2}{3}frac{7^n}{2^n}(n+1)(n+2)$$
$endgroup$
add a comment |
$begingroup$
I got $$a_n=frac{2}{3}frac{7^n}{2^n}(n+1)(n+2)$$
$endgroup$
I got $$a_n=frac{2}{3}frac{7^n}{2^n}(n+1)(n+2)$$
answered Mar 20 at 12:33
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.7k42867
78.7k42867
add a comment |
add a comment |
$begingroup$
$$a_n=a_{n-r}cdotdfrac{7^r(n+2)(n+1)cdots(n-r+3)}{2^r n(n-1)cdots(n-r+1)}$$ $0le rle n-1$
For $rge2implies nge3$ $$a_n=a_{n-r}cdotleft(dfrac72right)^rdfrac{(n+2)(n+1)}{(n-r+2)(n-r+1)}$$
Set $r=n-1$
$endgroup$
add a comment |
$begingroup$
$$a_n=a_{n-r}cdotdfrac{7^r(n+2)(n+1)cdots(n-r+3)}{2^r n(n-1)cdots(n-r+1)}$$ $0le rle n-1$
For $rge2implies nge3$ $$a_n=a_{n-r}cdotleft(dfrac72right)^rdfrac{(n+2)(n+1)}{(n-r+2)(n-r+1)}$$
Set $r=n-1$
$endgroup$
add a comment |
$begingroup$
$$a_n=a_{n-r}cdotdfrac{7^r(n+2)(n+1)cdots(n-r+3)}{2^r n(n-1)cdots(n-r+1)}$$ $0le rle n-1$
For $rge2implies nge3$ $$a_n=a_{n-r}cdotleft(dfrac72right)^rdfrac{(n+2)(n+1)}{(n-r+2)(n-r+1)}$$
Set $r=n-1$
$endgroup$
$$a_n=a_{n-r}cdotdfrac{7^r(n+2)(n+1)cdots(n-r+3)}{2^r n(n-1)cdots(n-r+1)}$$ $0le rle n-1$
For $rge2implies nge3$ $$a_n=a_{n-r}cdotleft(dfrac72right)^rdfrac{(n+2)(n+1)}{(n-r+2)(n-r+1)}$$
Set $r=n-1$
edited Mar 20 at 12:41
answered Mar 20 at 12:32
lab bhattacharjeelab bhattacharjee
228k15158279
228k15158279
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3155370%2fmathematical-induction-recursion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown