Complicated limit calculation The 2019 Stack Overflow Developer Survey Results Are...
Is "plugging out" electronic devices an American expression?
Why didn't the Event Horizon Telescope team mention Sagittarius A*?
Why do some words that are not inflected have an umlaut?
Falsification in Math vs Science
Deal with toxic manager when you can't quit
Did Section 31 appear in Star Trek: The Next Generation?
Are there any other methods to apply to solving simultaneous equations?
Does a dangling wire really electrocute me if I'm standing in water?
Can a flute soloist sit?
Can we generate random numbers using irrational numbers like π and e?
Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
Is there any way to tell whether the shot is going to hit you or not?
How to notate time signature switching consistently every measure
What did it mean to "align" a radio?
Is a "Democratic" Oligarchy-Style System Possible?
Resizing object distorts it (Illustrator CC 2018)
Where to refill my bottle in India?
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
During Temple times, who can butcher a kosher animal?
How technical should a Scrum Master be to effectively remove impediments?
Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
Why is the maximum length of OpenWrt’s root password 8 characters?
Complicated limit calculation
The 2019 Stack Overflow Developer Survey Results Are InProblematic limit calculationLimit calculationDetermine the limit for $ageq-1$Find the limit $L=lim_{nto infty} (-1)^{n}sinleft(pisqrt{n^2+n}right)$Limit involving complicated integralLimit (Calculus)Impossible Limit CalculationHow can we solve this limit: $lim _{xto infty :}left(frac{tanleft(xright)}{x}right)$?Computation of a complicated limitHow to calculate this complicated limit?
$begingroup$
Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.
Thanks in advance!
calculus limits
$endgroup$
add a comment |
$begingroup$
Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.
Thanks in advance!
calculus limits
$endgroup$
add a comment |
$begingroup$
Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.
Thanks in advance!
calculus limits
$endgroup$
Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.
Thanks in advance!
calculus limits
calculus limits
edited Dec 21 '12 at 16:31
Nameless
10.5k12255
10.5k12255
asked Dec 21 '12 at 16:08
SmithnsonSmithnson
255
255
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
An even quicker way to the answer comes from observing that
$$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$
$$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$
$$ = frac{2 x^{frac{m}{n}}}{n x^m} $$
The value $2/n$ follows from the factor on the right of the original expression.
$endgroup$
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
1
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
add a comment |
$begingroup$
First, observe that
$$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
=lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
$$
Now, since
$$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$
the limit becomes
$$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$
The denominator tends to $1+1+...+1=n$ therefore
$$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$
$endgroup$
add a comment |
$begingroup$
Substitute $y=x^m$. Then after rework the limit is that of
$$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$
Then
by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$
or multiplying by the conjugate multinomial
$$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$
- or by L'Hospital with the variable $y^{-1}$,
$$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f263306%2fcomplicated-limit-calculation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
An even quicker way to the answer comes from observing that
$$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$
$$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$
$$ = frac{2 x^{frac{m}{n}}}{n x^m} $$
The value $2/n$ follows from the factor on the right of the original expression.
$endgroup$
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
1
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
add a comment |
$begingroup$
An even quicker way to the answer comes from observing that
$$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$
$$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$
$$ = frac{2 x^{frac{m}{n}}}{n x^m} $$
The value $2/n$ follows from the factor on the right of the original expression.
$endgroup$
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
1
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
add a comment |
$begingroup$
An even quicker way to the answer comes from observing that
$$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$
$$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$
$$ = frac{2 x^{frac{m}{n}}}{n x^m} $$
The value $2/n$ follows from the factor on the right of the original expression.
$endgroup$
An even quicker way to the answer comes from observing that
$$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$
$$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$
$$ = frac{2 x^{frac{m}{n}}}{n x^m} $$
The value $2/n$ follows from the factor on the right of the original expression.
answered Dec 21 '12 at 16:33
Ron GordonRon Gordon
123k14156267
123k14156267
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
1
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
add a comment |
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
1
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
$begingroup$
Hi. Where did the second line come from?
$endgroup$
– Smithnson
Dec 21 '12 at 16:46
1
1
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
$begingroup$
Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
$endgroup$
– Ron Gordon
Dec 21 '12 at 16:55
add a comment |
$begingroup$
First, observe that
$$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
=lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
$$
Now, since
$$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$
the limit becomes
$$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$
The denominator tends to $1+1+...+1=n$ therefore
$$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$
$endgroup$
add a comment |
$begingroup$
First, observe that
$$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
=lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
$$
Now, since
$$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$
the limit becomes
$$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$
The denominator tends to $1+1+...+1=n$ therefore
$$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$
$endgroup$
add a comment |
$begingroup$
First, observe that
$$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
=lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
$$
Now, since
$$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$
the limit becomes
$$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$
The denominator tends to $1+1+...+1=n$ therefore
$$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$
$endgroup$
First, observe that
$$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
=lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
$$
Now, since
$$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$
the limit becomes
$$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$
The denominator tends to $1+1+...+1=n$ therefore
$$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$
edited Mar 21 at 14:15
Community♦
1
1
answered Dec 21 '12 at 16:23
NamelessNameless
10.5k12255
10.5k12255
add a comment |
add a comment |
$begingroup$
Substitute $y=x^m$. Then after rework the limit is that of
$$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$
Then
by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$
or multiplying by the conjugate multinomial
$$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$
- or by L'Hospital with the variable $y^{-1}$,
$$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$
$endgroup$
add a comment |
$begingroup$
Substitute $y=x^m$. Then after rework the limit is that of
$$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$
Then
by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$
or multiplying by the conjugate multinomial
$$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$
- or by L'Hospital with the variable $y^{-1}$,
$$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$
$endgroup$
add a comment |
$begingroup$
Substitute $y=x^m$. Then after rework the limit is that of
$$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$
Then
by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$
or multiplying by the conjugate multinomial
$$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$
- or by L'Hospital with the variable $y^{-1}$,
$$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$
$endgroup$
Substitute $y=x^m$. Then after rework the limit is that of
$$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$
Then
by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$
or multiplying by the conjugate multinomial
$$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$
- or by L'Hospital with the variable $y^{-1}$,
$$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$
answered Mar 21 at 14:29
Yves DaoustYves Daoust
133k676231
133k676231
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f263306%2fcomplicated-limit-calculation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown