Complicated limit calculation The 2019 Stack Overflow Developer Survey Results Are...

Is "plugging out" electronic devices an American expression?

Why didn't the Event Horizon Telescope team mention Sagittarius A*?

Why do some words that are not inflected have an umlaut?

Falsification in Math vs Science

Deal with toxic manager when you can't quit

Did Section 31 appear in Star Trek: The Next Generation?

Are there any other methods to apply to solving simultaneous equations?

Does a dangling wire really electrocute me if I'm standing in water?

Can a flute soloist sit?

Can we generate random numbers using irrational numbers like π and e?

Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Is there any way to tell whether the shot is going to hit you or not?

How to notate time signature switching consistently every measure

What did it mean to "align" a radio?

Is a "Democratic" Oligarchy-Style System Possible?

Resizing object distorts it (Illustrator CC 2018)

Where to refill my bottle in India?

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

During Temple times, who can butcher a kosher animal?

How technical should a Scrum Master be to effectively remove impediments?

Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?

Which Sci-Fi work first showed weapon of galactic-scale mass destruction?

Why is the maximum length of OpenWrt’s root password 8 characters?



Complicated limit calculation



The 2019 Stack Overflow Developer Survey Results Are InProblematic limit calculationLimit calculationDetermine the limit for $ageq-1$Find the limit $L=lim_{nto infty} (-1)^{n}sinleft(pisqrt{n^2+n}right)$Limit involving complicated integralLimit (Calculus)Impossible Limit CalculationHow can we solve this limit: $lim _{xto infty :}left(frac{tanleft(xright)}{x}right)$?Computation of a complicated limitHow to calculate this complicated limit?












1












$begingroup$


Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.



Thanks in advance!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.



    Thanks in advance!










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.



      Thanks in advance!










      share|cite|improve this question











      $endgroup$




      Find the limit of $$left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}$$ when $xtoinfty$ and $m,n$ are natural numbers.



      Thanks in advance!







      calculus limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 21 '12 at 16:31









      Nameless

      10.5k12255




      10.5k12255










      asked Dec 21 '12 at 16:08









      SmithnsonSmithnson

      255




      255






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          An even quicker way to the answer comes from observing that



          $$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$



          $$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$



          $$ = frac{2 x^{frac{m}{n}}}{n x^m} $$



          The value $2/n$ follows from the factor on the right of the original expression.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Hi. Where did the second line come from?
            $endgroup$
            – Smithnson
            Dec 21 '12 at 16:46






          • 1




            $begingroup$
            Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
            $endgroup$
            – Ron Gordon
            Dec 21 '12 at 16:55





















          1












          $begingroup$

          First, observe that
          $$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
          =lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
          lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
          $$

          Now, since
          $$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
          alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$

          the limit becomes
          $$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
          lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$

          The denominator tends to $1+1+...+1=n$ therefore
          $$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            Substitute $y=x^m$. Then after rework the limit is that of



            $$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$



            Then




            • by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$


            • or multiplying by the conjugate multinomial



            $$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$




            • or by L'Hospital with the variable $y^{-1}$,


            $$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f263306%2fcomplicated-limit-calculation%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              An even quicker way to the answer comes from observing that



              $$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$



              $$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$



              $$ = frac{2 x^{frac{m}{n}}}{n x^m} $$



              The value $2/n$ follows from the factor on the right of the original expression.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Hi. Where did the second line come from?
                $endgroup$
                – Smithnson
                Dec 21 '12 at 16:46






              • 1




                $begingroup$
                Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
                $endgroup$
                – Ron Gordon
                Dec 21 '12 at 16:55


















              3












              $begingroup$

              An even quicker way to the answer comes from observing that



              $$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$



              $$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$



              $$ = frac{2 x^{frac{m}{n}}}{n x^m} $$



              The value $2/n$ follows from the factor on the right of the original expression.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Hi. Where did the second line come from?
                $endgroup$
                – Smithnson
                Dec 21 '12 at 16:46






              • 1




                $begingroup$
                Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
                $endgroup$
                – Ron Gordon
                Dec 21 '12 at 16:55
















              3












              3








              3





              $begingroup$

              An even quicker way to the answer comes from observing that



              $$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$



              $$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$



              $$ = frac{2 x^{frac{m}{n}}}{n x^m} $$



              The value $2/n$ follows from the factor on the right of the original expression.






              share|cite|improve this answer









              $endgroup$



              An even quicker way to the answer comes from observing that



              $$left ( x^m + 1 right )^{frac{1}{n}} - left (x^m - 1 right)^{frac{1}{n}} = x^{frac{m}{n}} left [ left ( 1 + frac{1}{x^m} right )^{frac{1}{n}} - left (1 - frac{1}{x^m} right)^{frac{1}{n}} right ]$$



              $$ approx x^{frac{m}{n}} left [ left ( 1 + frac{1}{n x^m} right ) - left (1 - frac{1}{n x^m} right) right ]$$



              $$ = frac{2 x^{frac{m}{n}}}{n x^m} $$



              The value $2/n$ follows from the factor on the right of the original expression.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 21 '12 at 16:33









              Ron GordonRon Gordon

              123k14156267




              123k14156267












              • $begingroup$
                Hi. Where did the second line come from?
                $endgroup$
                – Smithnson
                Dec 21 '12 at 16:46






              • 1




                $begingroup$
                Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
                $endgroup$
                – Ron Gordon
                Dec 21 '12 at 16:55




















              • $begingroup$
                Hi. Where did the second line come from?
                $endgroup$
                – Smithnson
                Dec 21 '12 at 16:46






              • 1




                $begingroup$
                Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
                $endgroup$
                – Ron Gordon
                Dec 21 '12 at 16:55


















              $begingroup$
              Hi. Where did the second line come from?
              $endgroup$
              – Smithnson
              Dec 21 '12 at 16:46




              $begingroup$
              Hi. Where did the second line come from?
              $endgroup$
              – Smithnson
              Dec 21 '12 at 16:46




              1




              1




              $begingroup$
              Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
              $endgroup$
              – Ron Gordon
              Dec 21 '12 at 16:55






              $begingroup$
              Taylor expansion of $(1+epsilon)^{alpha} approx (1+ alpha epsilon)$ for | $epsilon | ll 1$.
              $endgroup$
              – Ron Gordon
              Dec 21 '12 at 16:55













              1












              $begingroup$

              First, observe that
              $$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
              =lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
              lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
              $$

              Now, since
              $$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
              alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$

              the limit becomes
              $$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
              lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$

              The denominator tends to $1+1+...+1=n$ therefore
              $$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                First, observe that
                $$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
                =lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
                lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
                $$

                Now, since
                $$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
                alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$

                the limit becomes
                $$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
                lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$

                The denominator tends to $1+1+...+1=n$ therefore
                $$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  First, observe that
                  $$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
                  =lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
                  lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
                  $$

                  Now, since
                  $$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
                  alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$

                  the limit becomes
                  $$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
                  lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$

                  The denominator tends to $1+1+...+1=n$ therefore
                  $$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$






                  share|cite|improve this answer











                  $endgroup$



                  First, observe that
                  $$lim_{xto +infty}left[(x^m + 1)^{1/n} - (x^m - 1)^{1/n}right]x^{(mn-m)/n}
                  =lim_{xto +infty}x^{frac mn}left[(1 + frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{(mn-m)/n}=
                  lim_{xto +infty}left[(1+ frac1{x^m})^{1/n} - (1- frac1{x^m})^{1/n}right]x^{m}
                  $$

                  Now, since
                  $$alpha^{1/n}-beta^{1/n}=frac{alpha-beta}{alpha^{{(n-1)}/n}+
                  alpha^{{(n-2)}/n}beta+...+alphabeta^{{(n-2)}/n}+beta^{{(n-1)}/n}}$$

                  the limit becomes
                  $$lim_{xto +infty}left[frac{1+ frac1{x^m}- 1+ frac1{x^m}}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]x^m=
                  lim_{xto +infty}left[frac{2}{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]$$

                  The denominator tends to $1+1+...+1=n$ therefore
                  $$lim_{xto +infty}left[frac2{(1+ frac1{x^m})^{{(n-1)}/n}+...+(1+ frac1{x^m})^{{(n-1)}/n}}right]=frac2n$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Mar 21 at 14:15









                  Community

                  1




                  1










                  answered Dec 21 '12 at 16:23









                  NamelessNameless

                  10.5k12255




                  10.5k12255























                      0












                      $begingroup$

                      Substitute $y=x^m$. Then after rework the limit is that of



                      $$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$



                      Then




                      • by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$


                      • or multiplying by the conjugate multinomial



                      $$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$




                      • or by L'Hospital with the variable $y^{-1}$,


                      $$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Substitute $y=x^m$. Then after rework the limit is that of



                        $$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$



                        Then




                        • by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$


                        • or multiplying by the conjugate multinomial



                        $$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$




                        • or by L'Hospital with the variable $y^{-1}$,


                        $$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Substitute $y=x^m$. Then after rework the limit is that of



                          $$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$



                          Then




                          • by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$


                          • or multiplying by the conjugate multinomial



                          $$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$




                          • or by L'Hospital with the variable $y^{-1}$,


                          $$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$






                          share|cite|improve this answer









                          $endgroup$



                          Substitute $y=x^m$. Then after rework the limit is that of



                          $$lim_{ytoinfty}y,((1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}).$$



                          Then




                          • by Taylor, $$lim_{ytoinfty}y,left(1+frac{y^{-1}}n-1+frac{y^{-1}}n+o(y^{-1})right)=frac2n,$$


                          • or multiplying by the conjugate multinomial



                          $$lim_{ytoinfty}yfrac{1+y^{-1}-1+y^{-1}}{displaystylesum_{k=0}^{n-1}(1+y^{-1})^{k/n}}=frac2n,$$




                          • or by L'Hospital with the variable $y^{-1}$,


                          $$lim_{ytoinfty}frac{(1+y^{-1})^{1/n}-(1-y^{-1})^{1/n}}{y^{-1}}=lim_{ytoinfty}frac{(1+y^{-1})^{1/n-1}+(1-y^{-1})^{1/n-1}}n=frac2n.$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Mar 21 at 14:29









                          Yves DaoustYves Daoust

                          133k676231




                          133k676231






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f263306%2fcomplicated-limit-calculation%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Nidaros erkebispedøme

                              Birsay

                              Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...