Inequality of vector norms with projections The Next CEO of Stack OverflowVector Spaces and...

Can we say or write : "No, it'sn't"?

What does "Its cash flow is deeply negative" mean?

Why do remote companies require working in the US?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Calculus II Question

Why do professional authors make "consistency" mistakes? And how to avoid them?

WOW air has ceased operation, can I get my tickets refunded?

Is micro rebar a better way to reinforce concrete than rebar?

How does the mv command work with external drives?

If a black hole is created from light, can this black hole then move at speed of light?

Should I tutor a student who I know has cheated on their homework?

What is the result of assigning to std::vector<T>::begin()?

How to safely derail a train during transit?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Why has the US not been more assertive in confronting Russia in recent years?

Is there a difference between "Fahrstuhl" and "Aufzug"

What is "(CFMCC)" on an ILS approach chart?

How do I make a variable always equal to the result of some calculations?

Are there any limitations on attacking while grappling?

Interfacing a button to MCU (and PC) with 50m long cable

Written every which way

Is it possible to search for a directory/file combination?

Anatomically Correct Strange Women In Ponds Distributing Swords

Several mode to write the symbol of a vector



Inequality of vector norms with projections



The Next CEO of Stack OverflowVector Spaces and Projectionsshow projection matrix is equal to matrix times its transposeFinding orthogonal projections onto $1$ (co)-dimensional subspaces of $mathbb R^n$How to prove that $P_{w^perp}=I-P_{w}$ for the following condition?Relationship between angle of vector with corresponding projections on orthogonal subspacesFinding orthogonal vectorOrthogonal projection of vector.Does the orthogonal projection of a vector onto a subspace equal the original vector?Proving an inequality about orthogonal projectionsOrthogonal projection and orthogonal complement












1












$begingroup$


Let $W$ be a vector subspace of $V$, a space with a dot product; $vin V$. Let $p_W(v)$ be the orthogonal projection of $v$ onto $W$ and $win W, wneq p_W(v)$.



How can i prove that $||v-w|| > ||v-p_W(v)||$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Pray tell, what is $w'$?
    $endgroup$
    – Robert Lewis
    Mar 16 at 17:49






  • 1




    $begingroup$
    My bad, I meant $w$
    $endgroup$
    – Noé Duarte González
    Mar 16 at 17:55










  • $begingroup$
    Thanks for the correction!
    $endgroup$
    – Robert Lewis
    Mar 16 at 18:06
















1












$begingroup$


Let $W$ be a vector subspace of $V$, a space with a dot product; $vin V$. Let $p_W(v)$ be the orthogonal projection of $v$ onto $W$ and $win W, wneq p_W(v)$.



How can i prove that $||v-w|| > ||v-p_W(v)||$?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Pray tell, what is $w'$?
    $endgroup$
    – Robert Lewis
    Mar 16 at 17:49






  • 1




    $begingroup$
    My bad, I meant $w$
    $endgroup$
    – Noé Duarte González
    Mar 16 at 17:55










  • $begingroup$
    Thanks for the correction!
    $endgroup$
    – Robert Lewis
    Mar 16 at 18:06














1












1








1


1



$begingroup$


Let $W$ be a vector subspace of $V$, a space with a dot product; $vin V$. Let $p_W(v)$ be the orthogonal projection of $v$ onto $W$ and $win W, wneq p_W(v)$.



How can i prove that $||v-w|| > ||v-p_W(v)||$?










share|cite|improve this question











$endgroup$




Let $W$ be a vector subspace of $V$, a space with a dot product; $vin V$. Let $p_W(v)$ be the orthogonal projection of $v$ onto $W$ and $win W, wneq p_W(v)$.



How can i prove that $||v-w|| > ||v-p_W(v)||$?







linear-algebra vector-spaces norm orthogonality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 16 at 17:54







Noé Duarte González

















asked Mar 16 at 17:42









Noé Duarte GonzálezNoé Duarte González

63




63












  • $begingroup$
    Pray tell, what is $w'$?
    $endgroup$
    – Robert Lewis
    Mar 16 at 17:49






  • 1




    $begingroup$
    My bad, I meant $w$
    $endgroup$
    – Noé Duarte González
    Mar 16 at 17:55










  • $begingroup$
    Thanks for the correction!
    $endgroup$
    – Robert Lewis
    Mar 16 at 18:06


















  • $begingroup$
    Pray tell, what is $w'$?
    $endgroup$
    – Robert Lewis
    Mar 16 at 17:49






  • 1




    $begingroup$
    My bad, I meant $w$
    $endgroup$
    – Noé Duarte González
    Mar 16 at 17:55










  • $begingroup$
    Thanks for the correction!
    $endgroup$
    – Robert Lewis
    Mar 16 at 18:06
















$begingroup$
Pray tell, what is $w'$?
$endgroup$
– Robert Lewis
Mar 16 at 17:49




$begingroup$
Pray tell, what is $w'$?
$endgroup$
– Robert Lewis
Mar 16 at 17:49




1




1




$begingroup$
My bad, I meant $w$
$endgroup$
– Noé Duarte González
Mar 16 at 17:55




$begingroup$
My bad, I meant $w$
$endgroup$
– Noé Duarte González
Mar 16 at 17:55












$begingroup$
Thanks for the correction!
$endgroup$
– Robert Lewis
Mar 16 at 18:06




$begingroup$
Thanks for the correction!
$endgroup$
– Robert Lewis
Mar 16 at 18:06










2 Answers
2






active

oldest

votes


















0












$begingroup$

Let $v = v_| + v_bot $, where $v_| = p_W(v)$, $v_bot in W^bot$.



$ |v-w|^2 = (v-w)^2 = v^2 + w^2 - 2vw = v_bot^2 + v_|^2 + w^2 - 2v_|w = v_bot^2 + (v_|-w)^2$



$ |v-v_||^2 = v_bot^2 < v_bot^2 + (v_|-w)^2 $, QED.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Since $W subset V$ is a fixed subspace, I am going to drop the subscript "$W"$ from $P$; in this answer, $P = P_W$.



    Recall that an orthogonal projection $P$ satisfies



    $P^2 = P = P^T; tag 1$



    thus for any



    $x, y in V tag 2$



    we have



    $langle x, Py rangle = langle P^Tx, y rangle = langle Px, y rangle; tag 3$



    now consider the three vectors $v$, $Pv$, and $w$;



    $Pv, w in W Longrightarrow Pv - w in W, tag 4$



    $langle v - Pv, w rangle = langle v, w rangle - langle Pv, w rangle = langle v, w rangle - langle v, Pw rangle = langle v, w rangle - langle v, w rangle = 0, tag 5$



    where we have used (3) and the fact that $Pw = w$ for $w in W$; since this holds for every $w in W$, we have established that



    $v - Pv in W^bot; tag 6$



    we write



    $v - w = (v - Pv) + (Pv - w), tag 7$



    and by virtue of (4) and (6)



    $langle v - Pv, Pv - w rangle = 0, tag 8$



    whence



    $Vert v - w Vert^2 = langle v - w, v - w rangle = langle (v - Pv) + (Pv - w), (v - Pv) + (Pv - w) rangle$
    $= langle v - Pv, v - Pv rangle -2langle v - Pv, Pv - w rangle + langle Pv - w, Pv - w rangle$
    $= Vert v - Pv Vert^2 + Vert Pv - w Vert^2;tag 9$



    since each term on the right is non-negative, we find that



    $Vert v - w Vert^2 ge Vert v - Pv Vert^2, tag{10}$



    whence



    $Vert v - w Vert ge Vert v - Pv Vert, ; forall w in W, tag{11}$



    with equality holding precisely when



    $Vert w - Pv Vert = 0 Longleftrightarrow w = Pv; tag{12}$



    thus



    $w ne Pv Longrightarrow Vert v - w Vert > Vert v - Pv Vert. tag{13}$



    $OEDelta$.



    Inequality of vector norms with projections






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150627%2finequality-of-vector-norms-with-projections%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Let $v = v_| + v_bot $, where $v_| = p_W(v)$, $v_bot in W^bot$.



      $ |v-w|^2 = (v-w)^2 = v^2 + w^2 - 2vw = v_bot^2 + v_|^2 + w^2 - 2v_|w = v_bot^2 + (v_|-w)^2$



      $ |v-v_||^2 = v_bot^2 < v_bot^2 + (v_|-w)^2 $, QED.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Let $v = v_| + v_bot $, where $v_| = p_W(v)$, $v_bot in W^bot$.



        $ |v-w|^2 = (v-w)^2 = v^2 + w^2 - 2vw = v_bot^2 + v_|^2 + w^2 - 2v_|w = v_bot^2 + (v_|-w)^2$



        $ |v-v_||^2 = v_bot^2 < v_bot^2 + (v_|-w)^2 $, QED.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Let $v = v_| + v_bot $, where $v_| = p_W(v)$, $v_bot in W^bot$.



          $ |v-w|^2 = (v-w)^2 = v^2 + w^2 - 2vw = v_bot^2 + v_|^2 + w^2 - 2v_|w = v_bot^2 + (v_|-w)^2$



          $ |v-v_||^2 = v_bot^2 < v_bot^2 + (v_|-w)^2 $, QED.






          share|cite|improve this answer









          $endgroup$



          Let $v = v_| + v_bot $, where $v_| = p_W(v)$, $v_bot in W^bot$.



          $ |v-w|^2 = (v-w)^2 = v^2 + w^2 - 2vw = v_bot^2 + v_|^2 + w^2 - 2v_|w = v_bot^2 + (v_|-w)^2$



          $ |v-v_||^2 = v_bot^2 < v_bot^2 + (v_|-w)^2 $, QED.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 16 at 18:14









          colt_browningcolt_browning

          768110




          768110























              0












              $begingroup$

              Since $W subset V$ is a fixed subspace, I am going to drop the subscript "$W"$ from $P$; in this answer, $P = P_W$.



              Recall that an orthogonal projection $P$ satisfies



              $P^2 = P = P^T; tag 1$



              thus for any



              $x, y in V tag 2$



              we have



              $langle x, Py rangle = langle P^Tx, y rangle = langle Px, y rangle; tag 3$



              now consider the three vectors $v$, $Pv$, and $w$;



              $Pv, w in W Longrightarrow Pv - w in W, tag 4$



              $langle v - Pv, w rangle = langle v, w rangle - langle Pv, w rangle = langle v, w rangle - langle v, Pw rangle = langle v, w rangle - langle v, w rangle = 0, tag 5$



              where we have used (3) and the fact that $Pw = w$ for $w in W$; since this holds for every $w in W$, we have established that



              $v - Pv in W^bot; tag 6$



              we write



              $v - w = (v - Pv) + (Pv - w), tag 7$



              and by virtue of (4) and (6)



              $langle v - Pv, Pv - w rangle = 0, tag 8$



              whence



              $Vert v - w Vert^2 = langle v - w, v - w rangle = langle (v - Pv) + (Pv - w), (v - Pv) + (Pv - w) rangle$
              $= langle v - Pv, v - Pv rangle -2langle v - Pv, Pv - w rangle + langle Pv - w, Pv - w rangle$
              $= Vert v - Pv Vert^2 + Vert Pv - w Vert^2;tag 9$



              since each term on the right is non-negative, we find that



              $Vert v - w Vert^2 ge Vert v - Pv Vert^2, tag{10}$



              whence



              $Vert v - w Vert ge Vert v - Pv Vert, ; forall w in W, tag{11}$



              with equality holding precisely when



              $Vert w - Pv Vert = 0 Longleftrightarrow w = Pv; tag{12}$



              thus



              $w ne Pv Longrightarrow Vert v - w Vert > Vert v - Pv Vert. tag{13}$



              $OEDelta$.



              Inequality of vector norms with projections






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Since $W subset V$ is a fixed subspace, I am going to drop the subscript "$W"$ from $P$; in this answer, $P = P_W$.



                Recall that an orthogonal projection $P$ satisfies



                $P^2 = P = P^T; tag 1$



                thus for any



                $x, y in V tag 2$



                we have



                $langle x, Py rangle = langle P^Tx, y rangle = langle Px, y rangle; tag 3$



                now consider the three vectors $v$, $Pv$, and $w$;



                $Pv, w in W Longrightarrow Pv - w in W, tag 4$



                $langle v - Pv, w rangle = langle v, w rangle - langle Pv, w rangle = langle v, w rangle - langle v, Pw rangle = langle v, w rangle - langle v, w rangle = 0, tag 5$



                where we have used (3) and the fact that $Pw = w$ for $w in W$; since this holds for every $w in W$, we have established that



                $v - Pv in W^bot; tag 6$



                we write



                $v - w = (v - Pv) + (Pv - w), tag 7$



                and by virtue of (4) and (6)



                $langle v - Pv, Pv - w rangle = 0, tag 8$



                whence



                $Vert v - w Vert^2 = langle v - w, v - w rangle = langle (v - Pv) + (Pv - w), (v - Pv) + (Pv - w) rangle$
                $= langle v - Pv, v - Pv rangle -2langle v - Pv, Pv - w rangle + langle Pv - w, Pv - w rangle$
                $= Vert v - Pv Vert^2 + Vert Pv - w Vert^2;tag 9$



                since each term on the right is non-negative, we find that



                $Vert v - w Vert^2 ge Vert v - Pv Vert^2, tag{10}$



                whence



                $Vert v - w Vert ge Vert v - Pv Vert, ; forall w in W, tag{11}$



                with equality holding precisely when



                $Vert w - Pv Vert = 0 Longleftrightarrow w = Pv; tag{12}$



                thus



                $w ne Pv Longrightarrow Vert v - w Vert > Vert v - Pv Vert. tag{13}$



                $OEDelta$.



                Inequality of vector norms with projections






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Since $W subset V$ is a fixed subspace, I am going to drop the subscript "$W"$ from $P$; in this answer, $P = P_W$.



                  Recall that an orthogonal projection $P$ satisfies



                  $P^2 = P = P^T; tag 1$



                  thus for any



                  $x, y in V tag 2$



                  we have



                  $langle x, Py rangle = langle P^Tx, y rangle = langle Px, y rangle; tag 3$



                  now consider the three vectors $v$, $Pv$, and $w$;



                  $Pv, w in W Longrightarrow Pv - w in W, tag 4$



                  $langle v - Pv, w rangle = langle v, w rangle - langle Pv, w rangle = langle v, w rangle - langle v, Pw rangle = langle v, w rangle - langle v, w rangle = 0, tag 5$



                  where we have used (3) and the fact that $Pw = w$ for $w in W$; since this holds for every $w in W$, we have established that



                  $v - Pv in W^bot; tag 6$



                  we write



                  $v - w = (v - Pv) + (Pv - w), tag 7$



                  and by virtue of (4) and (6)



                  $langle v - Pv, Pv - w rangle = 0, tag 8$



                  whence



                  $Vert v - w Vert^2 = langle v - w, v - w rangle = langle (v - Pv) + (Pv - w), (v - Pv) + (Pv - w) rangle$
                  $= langle v - Pv, v - Pv rangle -2langle v - Pv, Pv - w rangle + langle Pv - w, Pv - w rangle$
                  $= Vert v - Pv Vert^2 + Vert Pv - w Vert^2;tag 9$



                  since each term on the right is non-negative, we find that



                  $Vert v - w Vert^2 ge Vert v - Pv Vert^2, tag{10}$



                  whence



                  $Vert v - w Vert ge Vert v - Pv Vert, ; forall w in W, tag{11}$



                  with equality holding precisely when



                  $Vert w - Pv Vert = 0 Longleftrightarrow w = Pv; tag{12}$



                  thus



                  $w ne Pv Longrightarrow Vert v - w Vert > Vert v - Pv Vert. tag{13}$



                  $OEDelta$.



                  Inequality of vector norms with projections






                  share|cite|improve this answer









                  $endgroup$



                  Since $W subset V$ is a fixed subspace, I am going to drop the subscript "$W"$ from $P$; in this answer, $P = P_W$.



                  Recall that an orthogonal projection $P$ satisfies



                  $P^2 = P = P^T; tag 1$



                  thus for any



                  $x, y in V tag 2$



                  we have



                  $langle x, Py rangle = langle P^Tx, y rangle = langle Px, y rangle; tag 3$



                  now consider the three vectors $v$, $Pv$, and $w$;



                  $Pv, w in W Longrightarrow Pv - w in W, tag 4$



                  $langle v - Pv, w rangle = langle v, w rangle - langle Pv, w rangle = langle v, w rangle - langle v, Pw rangle = langle v, w rangle - langle v, w rangle = 0, tag 5$



                  where we have used (3) and the fact that $Pw = w$ for $w in W$; since this holds for every $w in W$, we have established that



                  $v - Pv in W^bot; tag 6$



                  we write



                  $v - w = (v - Pv) + (Pv - w), tag 7$



                  and by virtue of (4) and (6)



                  $langle v - Pv, Pv - w rangle = 0, tag 8$



                  whence



                  $Vert v - w Vert^2 = langle v - w, v - w rangle = langle (v - Pv) + (Pv - w), (v - Pv) + (Pv - w) rangle$
                  $= langle v - Pv, v - Pv rangle -2langle v - Pv, Pv - w rangle + langle Pv - w, Pv - w rangle$
                  $= Vert v - Pv Vert^2 + Vert Pv - w Vert^2;tag 9$



                  since each term on the right is non-negative, we find that



                  $Vert v - w Vert^2 ge Vert v - Pv Vert^2, tag{10}$



                  whence



                  $Vert v - w Vert ge Vert v - Pv Vert, ; forall w in W, tag{11}$



                  with equality holding precisely when



                  $Vert w - Pv Vert = 0 Longleftrightarrow w = Pv; tag{12}$



                  thus



                  $w ne Pv Longrightarrow Vert v - w Vert > Vert v - Pv Vert. tag{13}$



                  $OEDelta$.



                  Inequality of vector norms with projections







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 17 at 19:46









                  Robert LewisRobert Lewis

                  48.5k23167




                  48.5k23167






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3150627%2finequality-of-vector-norms-with-projections%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Nidaros erkebispedøme

                      Birsay

                      Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...