Show $frac{2}{pi} mathrm{exp}(-z^{2}) int_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x =...

Why are my pictures showing a dark band on one edge?

Drawing spherical mirrors

Why weren't discrete x86 CPUs ever used in game hardware?

What does 丫 mean? 丫是什么意思?

If the probability of a dog barking one or more times in a given hour is 84%, then what is the probability of a dog barking in 30 minutes?

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

Is CEO the "profession" with the most psychopaths?

What would you call this weird metallic apparatus that allows you to lift people?

What is the difference between a "ranged attack" and a "ranged weapon attack"?

How were pictures turned from film to a big picture in a picture frame before digital scanning?

How does Belgium enforce obligatory attendance in elections?

Deconstruction is ambiguous

How does the math work when buying airline miles?

How do I find out the mythology and history of my Fortress?

How many time has Arya actually used Needle?

Did any compiler fully use 80-bit floating point?

Tannaka duality for semisimple groups

What does Turing mean by this statement?

What does this say in Elvish?

How to save space when writing equations with cases?

Google .dev domain strangely redirects to https

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

Co-worker has annoying ringtone

What initially awakened the Balrog?



Show $frac{2}{pi} mathrm{exp}(-z^{2}) int_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can I evaluate $int_{-infty}^{infty}frac{e^{-x^2}(2x^2-1)}{1+x^2}dx$?Integration involving rational function and exponentialsIntegrating a product of exponential and complementary error function with square-root of variable in the denominatorRepeated Indefinite Integration of Gaussian IntegralEvaluating $int_1^{infty}x: text{erfc}(a+b log (x)) , dx$Prove $intlimits_{0}^{infty} mathrm{exp}(-ax^{2}-frac{b}{x^{2}}) mathrm{d} x = frac{1}{2}sqrt{frac{pi}{a}}mathrm{e}^{-2sqrt{ab}}$Prove $int_{0}^{1} frac{sin^{-1}(x)}{x} dx = frac{pi}{2}ln2$Integrate $int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx$Any simple way for proving $int_{0}^{infty} mathrm{erf(x)erfc{(x)}}, dx = frac{sqrt 2-1}{sqrtpi}$?Integral of $exp[text{erfc}[C x]]$Calculating improper integral $int limits_{0}^{infty}frac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$closed-form solution to $int_0^infty x^aexp(-bx)left(frac{1}{text{erfc}(csqrt{x})}right)^{2a}$












3












$begingroup$


I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.



For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes



begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}










share|cite|improve this question











$endgroup$












  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47


















3












$begingroup$


I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.



For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes



begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}










share|cite|improve this question











$endgroup$












  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47
















3












3








3


1



$begingroup$


I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.



For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes



begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}










share|cite|improve this question











$endgroup$




I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.



Addendum



Expanding @Jack D'Aurizio's solution, we have



begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.



For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes



begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.



Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}







integration definite-integrals special-functions error-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 13 '17 at 12:20









Community

1




1










asked Oct 17 '16 at 22:02









poweierstrasspoweierstrass

1,765515




1,765515












  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47




















  • $begingroup$
    The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
    $endgroup$
    – Random Variable
    Nov 20 '17 at 2:47


















$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47






$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47












3 Answers
3






active

oldest

votes


















1












$begingroup$

With the substitution $x=frac{t}{z}$, the integral on the left becomes



$$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
and we may switch to Fourier transforms. Since
$$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
$I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.





An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:



$$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
    $endgroup$
    – user243301
    Oct 18 '16 at 14:37












  • $begingroup$
    Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 0:00



















4












$begingroup$

Assuming $z>0$,



$$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$





$(1)$ Tonelli's theorem



$(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$



$(3)$ Let $u = z^{2}+t$.



$(4)$ Let $w=sqrt{u}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Excellent. Your initial substitution is exactly what I was seeking.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 10:49



















1












$begingroup$

begin{eqnarray}
&&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
&&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
&&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
&&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
&&frac{pi}{2} erfc(z) e^{z^2}
end{eqnarray}

where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    With the substitution $x=frac{t}{z}$, the integral on the left becomes



    $$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
    and we may switch to Fourier transforms. Since
    $$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
    $I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
    We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.





    An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:



    $$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37












    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00
















    1












    $begingroup$

    With the substitution $x=frac{t}{z}$, the integral on the left becomes



    $$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
    and we may switch to Fourier transforms. Since
    $$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
    $I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
    We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.





    An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:



    $$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37












    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00














    1












    1








    1





    $begingroup$

    With the substitution $x=frac{t}{z}$, the integral on the left becomes



    $$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
    and we may switch to Fourier transforms. Since
    $$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
    $I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
    We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.





    An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:



    $$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$






    share|cite|improve this answer











    $endgroup$



    With the substitution $x=frac{t}{z}$, the integral on the left becomes



    $$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
    and we may switch to Fourier transforms. Since
    $$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
    $I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.



    As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
    $$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
    We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.





    An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:



    $$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Oct 17 '16 at 23:27

























    answered Oct 17 '16 at 22:35









    Jack D'AurizioJack D'Aurizio

    292k33284674




    292k33284674








    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37












    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00














    • 1




      $begingroup$
      You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
      $endgroup$
      – user243301
      Oct 18 '16 at 14:37












    • $begingroup$
      Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 0:00








    1




    1




    $begingroup$
    You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
    $endgroup$
    – user243301
    Oct 18 '16 at 14:37






    $begingroup$
    You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
    $endgroup$
    – user243301
    Oct 18 '16 at 14:37














    $begingroup$
    Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 0:00




    $begingroup$
    Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 0:00











    4












    $begingroup$

    Assuming $z>0$,



    $$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$





    $(1)$ Tonelli's theorem



    $(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$



    $(3)$ Let $u = z^{2}+t$.



    $(4)$ Let $w=sqrt{u}$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49
















    4












    $begingroup$

    Assuming $z>0$,



    $$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$





    $(1)$ Tonelli's theorem



    $(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$



    $(3)$ Let $u = z^{2}+t$.



    $(4)$ Let $w=sqrt{u}$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49














    4












    4








    4





    $begingroup$

    Assuming $z>0$,



    $$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$





    $(1)$ Tonelli's theorem



    $(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$



    $(3)$ Let $u = z^{2}+t$.



    $(4)$ Let $w=sqrt{u}$.






    share|cite|improve this answer









    $endgroup$



    Assuming $z>0$,



    $$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$





    $(1)$ Tonelli's theorem



    $(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$



    $(3)$ Let $u = z^{2}+t$.



    $(4)$ Let $w=sqrt{u}$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Oct 20 '16 at 2:49









    Random VariableRandom Variable

    25.6k173139




    25.6k173139












    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49


















    • $begingroup$
      Excellent. Your initial substitution is exactly what I was seeking.
      $endgroup$
      – poweierstrass
      Oct 20 '16 at 10:49
















    $begingroup$
    Excellent. Your initial substitution is exactly what I was seeking.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 10:49




    $begingroup$
    Excellent. Your initial substitution is exactly what I was seeking.
    $endgroup$
    – poweierstrass
    Oct 20 '16 at 10:49











    1












    $begingroup$

    begin{eqnarray}
    &&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
    &&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
    &&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
    &&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
    &&frac{pi}{2} erfc(z) e^{z^2}
    end{eqnarray}

    where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      begin{eqnarray}
      &&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
      &&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
      &&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
      &&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
      &&frac{pi}{2} erfc(z) e^{z^2}
      end{eqnarray}

      where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        begin{eqnarray}
        &&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
        &&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
        &&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
        &&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
        &&frac{pi}{2} erfc(z) e^{z^2}
        end{eqnarray}

        where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .






        share|cite|improve this answer









        $endgroup$



        begin{eqnarray}
        &&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
        &&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
        &&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
        &&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
        &&frac{pi}{2} erfc(z) e^{z^2}
        end{eqnarray}

        where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 25 at 17:21









        PrzemoPrzemo

        4,71811032




        4,71811032






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Nidaros erkebispedøme

            Birsay

            Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...