Show $frac{2}{pi} mathrm{exp}(-z^{2}) int_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x =...
Why are my pictures showing a dark band on one edge?
Drawing spherical mirrors
Why weren't discrete x86 CPUs ever used in game hardware?
What does 丫 mean? 丫是什么意思?
If the probability of a dog barking one or more times in a given hour is 84%, then what is the probability of a dog barking in 30 minutes?
Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode
Is CEO the "profession" with the most psychopaths?
What would you call this weird metallic apparatus that allows you to lift people?
What is the difference between a "ranged attack" and a "ranged weapon attack"?
How were pictures turned from film to a big picture in a picture frame before digital scanning?
How does Belgium enforce obligatory attendance in elections?
Deconstruction is ambiguous
How does the math work when buying airline miles?
How do I find out the mythology and history of my Fortress?
How many time has Arya actually used Needle?
Did any compiler fully use 80-bit floating point?
Tannaka duality for semisimple groups
What does Turing mean by this statement?
What does this say in Elvish?
How to save space when writing equations with cases?
Google .dev domain strangely redirects to https
How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?
Co-worker has annoying ringtone
What initially awakened the Balrog?
Show $frac{2}{pi} mathrm{exp}(-z^{2}) int_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can I evaluate $int_{-infty}^{infty}frac{e^{-x^2}(2x^2-1)}{1+x^2}dx$?Integration involving rational function and exponentialsIntegrating a product of exponential and complementary error function with square-root of variable in the denominatorRepeated Indefinite Integration of Gaussian IntegralEvaluating $int_1^{infty}x: text{erfc}(a+b log (x)) , dx$Prove $intlimits_{0}^{infty} mathrm{exp}(-ax^{2}-frac{b}{x^{2}}) mathrm{d} x = frac{1}{2}sqrt{frac{pi}{a}}mathrm{e}^{-2sqrt{ab}}$Prove $int_{0}^{1} frac{sin^{-1}(x)}{x} dx = frac{pi}{2}ln2$Integrate $int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx$Any simple way for proving $int_{0}^{infty} mathrm{erf(x)erfc{(x)}}, dx = frac{sqrt 2-1}{sqrtpi}$?Integral of $exp[text{erfc}[C x]]$Calculating improper integral $int limits_{0}^{infty}frac{mathrm{e}^{-x}}{sqrt{x}},mathrm{d}x$closed-form solution to $int_0^infty x^aexp(-bx)left(frac{1}{text{erfc}(csqrt{x})}right)^{2a}$
$begingroup$
I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.
For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes
begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}
integration definite-integrals special-functions error-function
$endgroup$
add a comment |
$begingroup$
I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.
For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes
begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}
integration definite-integrals special-functions error-function
$endgroup$
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
add a comment |
$begingroup$
I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.
For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes
begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}
integration definite-integrals special-functions error-function
$endgroup$
I used the result $$frac{2}{pi} mathrm{exp}(-z^{2}) intlimits_{0}^{infty} mathrm{exp}(-z^{2}x^{2}) frac{1}{x^{2}+1} mathrm{d}x = mathrm{erfc}(z)$$ to answer this MSE question. As I mentioned in the link, I obtained this result from the DLMF. I happened to find this solution after failing to evaluate the integral using a variety of substitutions. A solution would be appreciated.
Addendum
Expanding @Jack D'Aurizio's solution, we have
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{2z}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{align}
we used the substitution $x=t/z$.
For the integral
begin{equation}
intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t
end{equation}
we let $f(t) = mathrm{e}^{-t^{2}}$ and $g(t) = 1/(z^{2} + t^{2})$ and take Fourier transforms of each,
begin{equation}
mathrm{F}(s) = mathcal{F}[f(t)] = frac{mathrm{e}^{-s^{2}/4}}{sqrt{2}}
end{equation}
and
begin{equation}
mathrm{G}(s) = mathcal{F}[g(t)] = frac{1}{z}sqrt{frac{pi}{2}} mathrm{e}^{-z|s|}
end{equation}
then invoke Parseval's theorem
begin{equation}
intlimits_{-infty}^{infty} f(t)overline{g(t)} mathrm{d}t
= intlimits_{-infty}^{infty} mathrm{F}(s)overline{mathrm{G}(s)} mathrm{d}s
end{equation}
dropping constants, the integral becomes
begin{align}
intlimits_{-infty}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s
&= 2intlimits_{0}^{infty} mathrm{e}^{-s^{2}/4} mathrm{e}^{-z|s|} mathrm{d}s \
&= 2mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-(s+2z)^{2}/4} mathrm{d}s \
&= 4mathrm{e}^{z^{2}} intlimits_{0}^{infty} mathrm{e}^{-y^{2}} mathrm{d}y \
&= 2sqrt{pi}mathrm{e}^{z^{2}} mathrm{erfc}(z)
end{align}
We completed the square in the exponent and used the substitution $y=z+s/2$.
Putting the pieces together yields our desired result
begin{align}
frac{2}{pi} mathrm{e}^{-z^{2}} intlimits_{0}^{infty} frac{mathrm{e}^{-z^{2}x^{2}}}{x^{2} + 1} mathrm{d}x &=
frac{z}{pi} mathrm{e}^{-z^{2}} intlimits_{-infty}^{infty} frac{mathrm{e}^{-t^{2}}}{z^{2} + t^{2}} mathrm{d}t \
&= frac{z}{pi} mathrm{e}^{-z^{2}} frac{1}{sqrt{2}} frac{1}{z} sqrt{frac{pi}{2}} 2sqrt{pi} mathrm{e}^{z^{2}} mathrm{erfc}(z) \
&= mathrm{erfc}(z)
end{align}
integration definite-integrals special-functions error-function
integration definite-integrals special-functions error-function
edited Apr 13 '17 at 12:20
Community♦
1
1
asked Oct 17 '16 at 22:02
poweierstrasspoweierstrass
1,765515
1,765515
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
add a comment |
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
With the substitution $x=frac{t}{z}$, the integral on the left becomes
$$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
and we may switch to Fourier transforms. Since
$$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
$I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:
$$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$
$endgroup$
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
Assuming $z>0$,
$$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$
$(1)$ Tonelli's theorem
$(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$
$(3)$ Let $u = z^{2}+t$.
$(4)$ Let $w=sqrt{u}$.
$endgroup$
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
begin{eqnarray}
&&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
&&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
&&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
&&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
&&frac{pi}{2} erfc(z) e^{z^2}
end{eqnarray}
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With the substitution $x=frac{t}{z}$, the integral on the left becomes
$$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
and we may switch to Fourier transforms. Since
$$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
$I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:
$$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$
$endgroup$
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
With the substitution $x=frac{t}{z}$, the integral on the left becomes
$$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
and we may switch to Fourier transforms. Since
$$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
$I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:
$$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$
$endgroup$
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
With the substitution $x=frac{t}{z}$, the integral on the left becomes
$$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
and we may switch to Fourier transforms. Since
$$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
$I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:
$$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$
$endgroup$
With the substitution $x=frac{t}{z}$, the integral on the left becomes
$$I=frac{2}{pi z e^{z^2}}int_{0}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt = frac{1}{pi z e^{z^2}}int_{-infty}^{+infty}frac{e^{-t^2}}{1+frac{t^2}{z^2}},dt $$
and we may switch to Fourier transforms. Since
$$mathcal{F}(e^{-t^2}) = frac{1}{sqrt{2}}e^{-s^2/4},qquad mathcal{F}left(frac{1}{1+frac{t^2}{z^2}}right)=zsqrt{frac{pi}{2}} e^{-z|s|}$$
$I$ boils down to an integral of the form $int_{0}^{+infty}expleft(-(s-xi)^2right),ds$ that is straightforward to convert in a expression involving the (complementary) error function.
As an alternative, you may use differentiation under the integral sign to prove that both sides of your equation fulfill the same differential equation with the same initial constraints, then invoke the uniqueness part of the Cauchy-Lipschitz theorem:
$$ frac{d}{dz} LHS = -frac{2}{pi}int_{0}^{+infty}2z e^{-z^2 (x^2+1)},dx,qquad frac{d}{dz}RHS = -frac{2}{sqrt{pi}}e^{-z^2}.$$
We have $frac{d}{dz}(LHS-RHS)=0$, and $(LHS-RHS)(0)=1$.
An interesting consequence is the following (tight) approximation for the $text{erfc}$ function:
$$text{erfc}(z)=frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{e^{-z^2 x^2}}{x^2+1},dxleq frac{2e^{-z^2}}{pi}int_{0}^{+infty}frac{dx}{(x^2+1)(x^2 z^2+1)}=frac{1}{(1+z)e^{z^2}}.$$
edited Oct 17 '16 at 23:27
answered Oct 17 '16 at 22:35
Jack D'AurizioJack D'Aurizio
292k33284674
292k33284674
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
1
1
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
You always was generous with your answers in this site MSE. My vote is $A^{A^{+}}$, thanks from all users!
$endgroup$
– user243301
Oct 18 '16 at 14:37
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
$begingroup$
Thanks @Jack D'Aurizio. I expanded your solution and added it to the question.
$endgroup$
– poweierstrass
Oct 20 '16 at 0:00
add a comment |
$begingroup$
Assuming $z>0$,
$$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$
$(1)$ Tonelli's theorem
$(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$
$(3)$ Let $u = z^{2}+t$.
$(4)$ Let $w=sqrt{u}$.
$endgroup$
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
Assuming $z>0$,
$$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$
$(1)$ Tonelli's theorem
$(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$
$(3)$ Let $u = z^{2}+t$.
$(4)$ Let $w=sqrt{u}$.
$endgroup$
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
Assuming $z>0$,
$$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$
$(1)$ Tonelli's theorem
$(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$
$(3)$ Let $u = z^{2}+t$.
$(4)$ Let $w=sqrt{u}$.
$endgroup$
Assuming $z>0$,
$$ begin{align}int_{0}^{infty} frac{e^{-z^{2}x^{2}}}{1+x^{2}} , dx &= int_{0}^{infty}e^{-z^{2}x^{2}} int_{0}^{infty}e^{-t(1+x^{2})} , dt , dx \ &= int_{0}^{infty} e^{-t} int_{0}^{infty}e^{-(z^{2}+t)x^{2}} , dx , dt tag{1}\ &= frac{sqrt{pi}}{2}int_{0}^{infty} frac{e^{-t}}{sqrt{z^{2}+t}} , dt tag{2}\ &= frac{sqrt{pi}}{2} , e^{z^{2}}int_{z^{2}}^{infty}frac{e^{-u}}{sqrt{u}} , du \ &= sqrt{pi} , e^{z^{2}} int_{z}^{infty} e^{-w^{2}} , dw \ &= frac{pi}{2} , e^{z^{2}}operatorname{erfc}(z) end{align}$$
$(1)$ Tonelli's theorem
$(2)$ $int_{0}^{infty} e^{-ax^{2}} , dx = frac{sqrt{pi}}{2} frac{1}{sqrt{a}}$ for $a>0$
$(3)$ Let $u = z^{2}+t$.
$(4)$ Let $w=sqrt{u}$.
answered Oct 20 '16 at 2:49
Random VariableRandom Variable
25.6k173139
25.6k173139
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
$begingroup$
Excellent. Your initial substitution is exactly what I was seeking.
$endgroup$
– poweierstrass
Oct 20 '16 at 10:49
add a comment |
$begingroup$
begin{eqnarray}
&&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
&&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
&&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
&&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
&&frac{pi}{2} erfc(z) e^{z^2}
end{eqnarray}
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
add a comment |
$begingroup$
begin{eqnarray}
&&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
&&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
&&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
&&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
&&frac{pi}{2} erfc(z) e^{z^2}
end{eqnarray}
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
add a comment |
$begingroup$
begin{eqnarray}
&&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
&&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
&&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
&&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
&&frac{pi}{2} erfc(z) e^{z^2}
end{eqnarray}
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
$endgroup$
begin{eqnarray}
&&intlimits_0^infty frac{e^{-z^2 x^2}}{1+x^2} dx=\
&&intlimits_0^infty frac{e^{-frac{1}{2} (sqrt{2}z)^2 x^2}}{1+x^2} dx=\
&&2 pi T(sqrt{2} z, infty) e^{frac{1}{2} (sqrt{2}z)^2}\
&&2 pi intlimits_{sqrt{2} z}^infty frac{e^{-1/2 xi^2}}{sqrt{2 pi}} frac{1}{2} underbrace{erf(frac{infty cdot xi}{sqrt{2}})}_{1} dxi e^{frac{1}{2} (sqrt{2}z)^2}=\
&&frac{pi}{2} erfc(z) e^{z^2}
end{eqnarray}
where $T(h,a)$ is the Owen's T function https://en.wikipedia.org/wiki/Owen%27s_T_function .
answered Mar 25 at 17:21
PrzemoPrzemo
4,71811032
4,71811032
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1973280%2fshow-frac2-pi-mathrmexp-z2-int-0-infty-mathrmexp-z2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The approach I used had already been used in an answer to a related question to evaluate the case $z=1$.
$endgroup$
– Random Variable
Nov 20 '17 at 2:47