Behavior of the Gaussian Hypergeometric function when one of its arguments approaches $0$ or...
What is Cash Advance APR?
How to fade a semiplane defined by line?
Why can Carol Danvers change her suit colours in the first place?
Using substitution ciphers to generate new alphabets in a novel
What are the advantages of simplicial model categories over non-simplicial ones?
Do the primes contain an infinite almost arithmetic progression?
Does IPv6 have similar concept of network mask?
Open a doc from terminal, but not by its name
Picking the different solutions to the time independent Schrodinger eqaution
How to explain what's wrong with this application of the chain rule?
Is there a way to get `mathscr' with lower case letters in pdfLaTeX?
Recommended PCB layout understanding - ADM2572 datasheet
How could a planet have erratic days?
Sums of entire surjective functions
Quoting Keynes in a lecture
Can a Canadian Travel to the USA twice, less than 180 days each time?
Extract more than nine arguments that occur periodically in a sentence to use in macros in order to typset
On a tidally locked planet, would time be quantized?
Can the US President recognize Israel’s sovereignty over the Golan Heights for the USA or does that need an act of Congress?
Need help understanding what a natural log transformation is actually doing and why specific transformations are required for linear regression
Is there an injective, monotonically increasing, strictly concave function from the reals, to the reals?
Why did the EU agree to delay the Brexit deadline?
Why is the "ls" command showing permissions of files in a FAT32 partition?
Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?
Behavior of the Gaussian Hypergeometric function when one of its arguments approaches $0$ or $1$
Hypergeometric function argument simplificationAlgebraic operations on hypergeometric functionsApproximating hypergeometric function F(1,1+a,2+a,z) for z->1Waring's Problem and the floor function - solving a recurrence relation by handComputing the hypergometric function $_1F_2$ in special casesExpressing the hypergeometric function as an infinite sum of squaresCan we establish a relation between the $F$ distribution and Binomial Distribution?Continuity of hypergeometric function in the argumentsMellin transform of a Gaussian Hypergeometric Function with negative $x$-argumentRewriting Appell's Hypergeometric Function $F_1$ in terms of Gauss' Hypergeometric Function $_2F_1$
$begingroup$
For two positive integers $a,b$, denote by $_2F_1(a,1-b;a+1;z)$ the Gaussian Hypergeometric function whose first three parameters are fixed at $a,1-b$ and $a+1$, respectively. such function is linked to the regularized incomplete Beta function (namely the CDF of a Beta distribution) by the relation:
$$
B(z;a,b)=frac{z^a}{a} {}_2F_1(a,1-b;a+1;z).
$$
I was wondering whether there exist functions $f,, g$, such that
$$
f(z)sim {}_2F_1(a,1-b;a+1;z) quad (zdownarrow 0),\
g(z)sim {}_2F_1(a,1-b;a+1;z) quad (zuparrow 1).
$$
In particular, I would be interested in the case $a,bgeq 1$.
calculus limits statistics asymptotics hypergeometric-function
$endgroup$
add a comment |
$begingroup$
For two positive integers $a,b$, denote by $_2F_1(a,1-b;a+1;z)$ the Gaussian Hypergeometric function whose first three parameters are fixed at $a,1-b$ and $a+1$, respectively. such function is linked to the regularized incomplete Beta function (namely the CDF of a Beta distribution) by the relation:
$$
B(z;a,b)=frac{z^a}{a} {}_2F_1(a,1-b;a+1;z).
$$
I was wondering whether there exist functions $f,, g$, such that
$$
f(z)sim {}_2F_1(a,1-b;a+1;z) quad (zdownarrow 0),\
g(z)sim {}_2F_1(a,1-b;a+1;z) quad (zuparrow 1).
$$
In particular, I would be interested in the case $a,bgeq 1$.
calculus limits statistics asymptotics hypergeometric-function
$endgroup$
add a comment |
$begingroup$
For two positive integers $a,b$, denote by $_2F_1(a,1-b;a+1;z)$ the Gaussian Hypergeometric function whose first three parameters are fixed at $a,1-b$ and $a+1$, respectively. such function is linked to the regularized incomplete Beta function (namely the CDF of a Beta distribution) by the relation:
$$
B(z;a,b)=frac{z^a}{a} {}_2F_1(a,1-b;a+1;z).
$$
I was wondering whether there exist functions $f,, g$, such that
$$
f(z)sim {}_2F_1(a,1-b;a+1;z) quad (zdownarrow 0),\
g(z)sim {}_2F_1(a,1-b;a+1;z) quad (zuparrow 1).
$$
In particular, I would be interested in the case $a,bgeq 1$.
calculus limits statistics asymptotics hypergeometric-function
$endgroup$
For two positive integers $a,b$, denote by $_2F_1(a,1-b;a+1;z)$ the Gaussian Hypergeometric function whose first three parameters are fixed at $a,1-b$ and $a+1$, respectively. such function is linked to the regularized incomplete Beta function (namely the CDF of a Beta distribution) by the relation:
$$
B(z;a,b)=frac{z^a}{a} {}_2F_1(a,1-b;a+1;z).
$$
I was wondering whether there exist functions $f,, g$, such that
$$
f(z)sim {}_2F_1(a,1-b;a+1;z) quad (zdownarrow 0),\
g(z)sim {}_2F_1(a,1-b;a+1;z) quad (zuparrow 1).
$$
In particular, I would be interested in the case $a,bgeq 1$.
calculus limits statistics asymptotics hypergeometric-function
calculus limits statistics asymptotics hypergeometric-function
edited Mar 13 at 16:22
Jack London
asked Mar 13 at 16:15
Jack LondonJack London
34018
34018
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have
$$
eqalign{
& F(z,a,b) = {}_2F_{,1} left( {left. {matrix{
{a,;1 - b} cr
{a + 1} cr
} ;} right|;z} right) = cr
& = sumlimits_{0, le ,k} {{{a^{,overline {,k,} } left( {1 - b} right)^{,overline {,k,} } } over {left( {a + 1} right)^{,overline {,k,} } }}
{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( {1 - b} right)^{,overline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( { - 1} right)^{,k} left( {b - 1} right)^{,underline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} cr
& = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} cr}
$$
Then, for the first limit you have
$$
mathop {lim }limits_{z, to ,0 + } F(z,a,b) = 1
$$
Continuing the development
$$
eqalign{
& F(z,a,b) = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,a + k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)int_{t = 0}^z {t^{,a + k - 1} } dt} = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)} left( { - t} right)^{,k} } dt = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt cr}
$$
which gives the relation with the Incomplete Beta function you already know.
$$
F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)quad left| {;0 < a,b} right.
$$
From here we get
$$
eqalign{
& mathop {lim }limits_{z, to ,1 - } F(z,a,b) = aint_{t = 0}^1 {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt = cr
& = a,{rm B}(a,b) cr}
$$
and since (re. for instance to this)
$$
{rm B}(z,;a,b) = {{z^{,,a} } over a}left( {1 + O(z)} right)
$$
also
$$
mathop {lim }limits_{z, to ,0 + } left( {F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)} right) = 1quad left| {;0 < a,b} right.
$$
and you can use the above expression for the whole domain of your interest.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3146798%2fbehavior-of-the-gaussian-hypergeometric-function-when-one-of-its-arguments-appro%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have
$$
eqalign{
& F(z,a,b) = {}_2F_{,1} left( {left. {matrix{
{a,;1 - b} cr
{a + 1} cr
} ;} right|;z} right) = cr
& = sumlimits_{0, le ,k} {{{a^{,overline {,k,} } left( {1 - b} right)^{,overline {,k,} } } over {left( {a + 1} right)^{,overline {,k,} } }}
{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( {1 - b} right)^{,overline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( { - 1} right)^{,k} left( {b - 1} right)^{,underline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} cr
& = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} cr}
$$
Then, for the first limit you have
$$
mathop {lim }limits_{z, to ,0 + } F(z,a,b) = 1
$$
Continuing the development
$$
eqalign{
& F(z,a,b) = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,a + k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)int_{t = 0}^z {t^{,a + k - 1} } dt} = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)} left( { - t} right)^{,k} } dt = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt cr}
$$
which gives the relation with the Incomplete Beta function you already know.
$$
F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)quad left| {;0 < a,b} right.
$$
From here we get
$$
eqalign{
& mathop {lim }limits_{z, to ,1 - } F(z,a,b) = aint_{t = 0}^1 {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt = cr
& = a,{rm B}(a,b) cr}
$$
and since (re. for instance to this)
$$
{rm B}(z,;a,b) = {{z^{,,a} } over a}left( {1 + O(z)} right)
$$
also
$$
mathop {lim }limits_{z, to ,0 + } left( {F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)} right) = 1quad left| {;0 < a,b} right.
$$
and you can use the above expression for the whole domain of your interest.
$endgroup$
add a comment |
$begingroup$
We have
$$
eqalign{
& F(z,a,b) = {}_2F_{,1} left( {left. {matrix{
{a,;1 - b} cr
{a + 1} cr
} ;} right|;z} right) = cr
& = sumlimits_{0, le ,k} {{{a^{,overline {,k,} } left( {1 - b} right)^{,overline {,k,} } } over {left( {a + 1} right)^{,overline {,k,} } }}
{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( {1 - b} right)^{,overline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( { - 1} right)^{,k} left( {b - 1} right)^{,underline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} cr
& = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} cr}
$$
Then, for the first limit you have
$$
mathop {lim }limits_{z, to ,0 + } F(z,a,b) = 1
$$
Continuing the development
$$
eqalign{
& F(z,a,b) = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,a + k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)int_{t = 0}^z {t^{,a + k - 1} } dt} = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)} left( { - t} right)^{,k} } dt = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt cr}
$$
which gives the relation with the Incomplete Beta function you already know.
$$
F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)quad left| {;0 < a,b} right.
$$
From here we get
$$
eqalign{
& mathop {lim }limits_{z, to ,1 - } F(z,a,b) = aint_{t = 0}^1 {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt = cr
& = a,{rm B}(a,b) cr}
$$
and since (re. for instance to this)
$$
{rm B}(z,;a,b) = {{z^{,,a} } over a}left( {1 + O(z)} right)
$$
also
$$
mathop {lim }limits_{z, to ,0 + } left( {F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)} right) = 1quad left| {;0 < a,b} right.
$$
and you can use the above expression for the whole domain of your interest.
$endgroup$
add a comment |
$begingroup$
We have
$$
eqalign{
& F(z,a,b) = {}_2F_{,1} left( {left. {matrix{
{a,;1 - b} cr
{a + 1} cr
} ;} right|;z} right) = cr
& = sumlimits_{0, le ,k} {{{a^{,overline {,k,} } left( {1 - b} right)^{,overline {,k,} } } over {left( {a + 1} right)^{,overline {,k,} } }}
{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( {1 - b} right)^{,overline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( { - 1} right)^{,k} left( {b - 1} right)^{,underline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} cr
& = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} cr}
$$
Then, for the first limit you have
$$
mathop {lim }limits_{z, to ,0 + } F(z,a,b) = 1
$$
Continuing the development
$$
eqalign{
& F(z,a,b) = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,a + k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)int_{t = 0}^z {t^{,a + k - 1} } dt} = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)} left( { - t} right)^{,k} } dt = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt cr}
$$
which gives the relation with the Incomplete Beta function you already know.
$$
F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)quad left| {;0 < a,b} right.
$$
From here we get
$$
eqalign{
& mathop {lim }limits_{z, to ,1 - } F(z,a,b) = aint_{t = 0}^1 {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt = cr
& = a,{rm B}(a,b) cr}
$$
and since (re. for instance to this)
$$
{rm B}(z,;a,b) = {{z^{,,a} } over a}left( {1 + O(z)} right)
$$
also
$$
mathop {lim }limits_{z, to ,0 + } left( {F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)} right) = 1quad left| {;0 < a,b} right.
$$
and you can use the above expression for the whole domain of your interest.
$endgroup$
We have
$$
eqalign{
& F(z,a,b) = {}_2F_{,1} left( {left. {matrix{
{a,;1 - b} cr
{a + 1} cr
} ;} right|;z} right) = cr
& = sumlimits_{0, le ,k} {{{a^{,overline {,k,} } left( {1 - b} right)^{,overline {,k,} } } over {left( {a + 1} right)^{,overline {,k,} } }}
{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( {1 - b} right)^{,overline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} = cr
& = asumlimits_{0, le ,k} {{{left( { - 1} right)^{,k} left( {b - 1} right)^{,underline {,k,} } } over {left( {a + k} right)}}{{z^{,k} } over {k!}}} cr
& = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} cr}
$$
Then, for the first limit you have
$$
mathop {lim }limits_{z, to ,0 + } F(z,a,b) = 1
$$
Continuing the development
$$
eqalign{
& F(z,a,b) = asumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right){{z^{,a + k} } over {left( {a + k} right)}}} = cr
& = a,z^{, - ,a} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)int_{t = 0}^z {t^{,a + k - 1} } dt} = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} sumlimits_{0, le ,k} {left( { - 1} right)^{,k} left( matrix{
b - 1 cr
k cr} right)} left( { - t} right)^{,k} } dt = cr
& = a,z^{, - ,a} int_{t = 0}^z {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt cr}
$$
which gives the relation with the Incomplete Beta function you already know.
$$
F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)quad left| {;0 < a,b} right.
$$
From here we get
$$
eqalign{
& mathop {lim }limits_{z, to ,1 - } F(z,a,b) = aint_{t = 0}^1 {t^{,a - 1} left( {1 - t} right)^{,b - 1} } dt = cr
& = a,{rm B}(a,b) cr}
$$
and since (re. for instance to this)
$$
{rm B}(z,;a,b) = {{z^{,,a} } over a}left( {1 + O(z)} right)
$$
also
$$
mathop {lim }limits_{z, to ,0 + } left( {F(z,a,b) = a,z^{, - ,a} ,{rm B}(z,;a,b)} right) = 1quad left| {;0 < a,b} right.
$$
and you can use the above expression for the whole domain of your interest.
answered Mar 13 at 17:49
G CabG Cab
20.4k31341
20.4k31341
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3146798%2fbehavior-of-the-gaussian-hypergeometric-function-when-one-of-its-arguments-appro%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown