Determinant is linear as a function of each of the rows of the matrix. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determinant after matrix change issueWhat is the origin of the determinant in linear algebra?The determinant function is the only one satisfying the conditionsIf a NxN matrix has two identical columns will its determinant be zero?Geometric interpretation of determinant when two rows are swappedDeterminant functionDeterminant and determinant function(explanation)How would I answer the following question about the determinant of a matrix?Determinant of a matrix and linear independence (explanation needed)Compute new matrix derterminant when only two rows change

Is the address of a local variable a constexpr?

Is there a documented rationale why the House Ways and Means chairman can demand tax info?

Why does Python start at index -1 when indexing a list from the end?

How widely used is the term Treppenwitz? Is it something that most Germans know?

Is there a Spanish version of "dot your i's and cross your t's" that includes the letter 'ñ'?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

Should I discuss the type of campaign with my players?

Is 1 ppb equal to 1 μg/kg?

Models of set theory where not every set can be linearly ordered

Can Pao de Queijo, and similar foods, be kosher for Passover?

Determinant is linear as a function of each of the rows of the matrix.

Is it true that "carbohydrates are of no use for the basal metabolic need"?

How to find all the available tools in macOS terminal?

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

What is a Meta algorithm?

Right-skewed distribution with mean equals to mode?

What do you call a phrase that's not an idiom yet?

If 'B is more likely given A', then 'A is more likely given B'

Antler Helmet: Can it work?

List *all* the tuples!

Are my PIs rude or am I just being too sensitive?

Did Kevin spill real chili?

Sorting numerically

What makes black pepper strong or mild?



Determinant is linear as a function of each of the rows of the matrix.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determinant after matrix change issueWhat is the origin of the determinant in linear algebra?The determinant function is the only one satisfying the conditionsIf a NxN matrix has two identical columns will its determinant be zero?Geometric interpretation of determinant when two rows are swappedDeterminant functionDeterminant and determinant function(explanation)How would I answer the following question about the determinant of a matrix?Determinant of a matrix and linear independence (explanation needed)Compute new matrix derterminant when only two rows change










2












$begingroup$


Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?










share|cite|improve this question











$endgroup$











  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    54 mins ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    54 mins ago
















2












$begingroup$


Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?










share|cite|improve this question











$endgroup$











  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    54 mins ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    54 mins ago














2












2








2





$begingroup$


Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?










share|cite|improve this question











$endgroup$




Today I heard in a lecture (some video on YouTube) that the determinant is linear as a function of each of the rows of the matrix.



I am not able to understand the above statement. I know that determinant is a special function which assign to each $x$ in $mathbb K^n times n$ a scalar. This is the intuitive idea. And this map is not linear as well. One way to see this is to consider the fact that determinant of $cA$ is $c^ndet(A)$



Can someone please explain what did the person mean by saying that the determinant is linear as a function of each of the rows of matrix?







linear-algebra matrices determinant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Rodrigo de Azevedo

13.2k41961




13.2k41961










asked 1 hour ago









StammeringMathematicianStammeringMathematician

2,8121324




2,8121324











  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    54 mins ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    54 mins ago

















  • $begingroup$
    I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
    $endgroup$
    – StammeringMathematician
    54 mins ago










  • $begingroup$
    Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
    $endgroup$
    – copper.hat
    54 mins ago
















$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
54 mins ago




$begingroup$
I got it. It means that elementary row operations have a linear effect on determinant. Say $A=(r1,r2,...,r_n)$ is a matrix then det of $(r_1,..,cr_j +r_i,..,r_n)$ is nothing but determinant of $(r_1,..,cr_j,..,r_n)$ plus determinant of $(r_1,..,r_i,..,r_n)$.Am I right?
$endgroup$
– StammeringMathematician
54 mins ago












$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
54 mins ago





$begingroup$
Yes. The fact that is is linear in each row separately gives rise to the combinatorial formula for the determinant.
$endgroup$
– copper.hat
54 mins ago











2 Answers
2






active

oldest

votes


















3












$begingroup$

If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



$$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$



This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
    $$
    det(M)=det(mathbfr_1,dots,mathbfr_n).
    $$

    To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
    $$
    det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
    $$

    Similarly if we fix all but one row (say the first), we obtain
    $$
    det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
    $$

    Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189406%2fdeterminant-is-linear-as-a-function-of-each-of-the-rows-of-the-matrix%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



      $$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$



      This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



        $$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$



        This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



          $$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$



          This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.






          share|cite|improve this answer









          $endgroup$



          If $r_1, ldots r_n$ are the rows of the matrix and $r_i = sa+tb$, where $s,t$ are scalars and $a,b$ are row vectors, then you have



          $$detbeginpmatrixr_1 \ vdots \r_i \ vdots \ r_nendpmatrix = detbeginpmatrixr_1 \ vdots \ sa+tb \ vdots \ r_nendpmatrix = sdetbeginpmatrixr_1 \ vdots \ a \ vdots \ r_nendpmatrix + tdetbeginpmatrixr_1 \ vdots \ b \ vdots \ r_nendpmatrix$$



          This holds for any row $i=1,ldots , n$. And similarly this also applies to columns.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 58 mins ago









          trancelocationtrancelocation

          14.1k1829




          14.1k1829





















              2












              $begingroup$

              Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
              $$
              det(M)=det(mathbfr_1,dots,mathbfr_n).
              $$

              To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
              $$
              det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
              $$

              Similarly if we fix all but one row (say the first), we obtain
              $$
              det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
              $$

              Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
                $$
                det(M)=det(mathbfr_1,dots,mathbfr_n).
                $$

                To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
                $$
                det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
                $$

                Similarly if we fix all but one row (say the first), we obtain
                $$
                det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
                $$

                Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
                  $$
                  det(M)=det(mathbfr_1,dots,mathbfr_n).
                  $$

                  To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
                  $$
                  det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
                  $$

                  Similarly if we fix all but one row (say the first), we obtain
                  $$
                  det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
                  $$

                  Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"






                  share|cite|improve this answer









                  $endgroup$



                  Let $M$ be an $ntimes n$ matrix with rows $mathbfr_1,dots,mathbfr_n$. Then we may think of the determinant as a function of the rows
                  $$
                  det(M)=det(mathbfr_1,dots,mathbfr_n).
                  $$

                  To say that $det$ is a linear function of the rows means that if we scale a single row by $c$, the result is scaled by $c$; that is,
                  $$
                  det(mathbfr_1,dots,mathbfr_i-1,cmathbfr_i,mathbfr_i+1dotsmathbfr_n)=cdet(mathbfr_1,dots,mathbfr_n).
                  $$

                  Similarly if we fix all but one row (say the first), we obtain
                  $$
                  det(mathbfx+mathbfr_1,mathbfr_2,dots,mathbfr_n)=det(mathbfx,dots,mathbfr_n)+det(mathbfr_1,dots,mathbfr_n).
                  $$

                  Your mistake was that you scale all the rows at once; to be linear, you can only do things "one at a time"







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 56 mins ago









                  TomGrubbTomGrubb

                  11.2k11639




                  11.2k11639



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189406%2fdeterminant-is-linear-as-a-function-of-each-of-the-rows-of-the-matrix%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Nidaros erkebispedøme

                      Birsay

                      Where did Arya get these scars? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why did Arya refuse to end it?Has the pronunciation of Arya Stark's name changed?Has Arya forgiven people?Why did Arya Stark lose her vision?Why can Arya still use the faces?Has the Narrow Sea become narrower?Does Arya Stark know how to make poisons outside of the House of Black and White?Why did Nymeria leave Arya?Why did Arya not kill the Lannister soldiers she encountered in the Riverlands?What is the current canonical age of Sansa, Bran and Arya Stark?