integral of $e^frac{1}{sqrt{x}}$Integral of $frac{-2}{sqrt{16-x^2}}$Calculus Question: Improper integral...

How many wives did king shaul have

How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction

What is the fastest integer factorization to break RSA?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

How to find if SQL server backup is encrypted with TDE without restoring the backup

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

How dangerous is XSS

Am I breaking OOP practice with this architecture?

Ambiguity in the definition of entropy

How obscure is the use of 令 in 令和?

Processor speed limited at 0.4 Ghz

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

Why is the sentence "Das ist eine Nase" correct?

Do Iron Man suits sport waste management systems?

Is there a hemisphere-neutral way of specifying a season?

Are British MPs missing the point, with these 'Indicative Votes'?

Was the old ablative pronoun "med" or "mēd"?

Knowledge-based authentication using Domain-driven Design in C#

In Bayesian inference, why are some terms dropped from the posterior predictive?

Could the museum Saturn V's be refitted for one more flight?

What is the most common color to indicate the input-field is disabled?

What historical events would have to change in order to make 19th century "steampunk" technology possible?

how do we prove that a sum of two periods is still a period?



integral of $e^frac{1}{sqrt{x}}$


Integral of $frac{-2}{sqrt{16-x^2}}$Calculus Question: Improper integral $int_{0}^{infty}frac{cos(2x+1)}{sqrt[3]{x}}dx$Indefinite integral of $frac{sqrt{x}}{sqrt{x}+1}$How to evaluate the integral of $sqrt{sinsqrt x}cos sqrt x / ( 1+x^2)$?Another messy integral: $I=int frac{sqrt{2-x-x^2}}{x^2} dx$could this integral be solved using substitution?Evaluate $int ( 3x + frac{6x^2 sin^2(frac{x}{2})}{x - sin x} ) frac{(x-sin x)^{3/2}}{sqrt{x}} mathrm{d}x$Evaluating the Integral: $int(frac{ln(sqrt{x})}{x}dx$Evaluating $int sqrt{frac{3-x}{3+x}} sin^{-1}left(sqrt{frac{3-x}{6}}right)dx$Evaluate $int frac{ln(t+sqrt{t^2+1)}}{1+t^2} , dt$













0












$begingroup$


Is there a way to evaluate $int e^frac{1}{sqrt{x}}dx$



I first used substitution, I let $frac{1}{sqrt{x}}=uimplies frac{-1}{2}x^frac{-3}{2}dx=du$ and also $x^frac{-3}{2}=u^3$ so $dx=-2u^{-3}du$



After substituting, I now have to evaluate
$-2int u^{-3}e^u du$ .



I then used integration by parts and ended up with
$-2u^{-3}e^u+u^{-1}e^u-2e^uln u+2int e^uln u du$



This is where I got the problem










share|cite|improve this question









$endgroup$












  • $begingroup$
    Is this a part of finding a definite integral, or are you looking for an anti-derivative? I don't think there is an elementary anti-derivative, so it will probably involve special functions.
    $endgroup$
    – StackTD
    Mar 18 at 13:38












  • $begingroup$
    Ok, thank you StackTD
    $endgroup$
    – mamotebang
    Mar 18 at 13:45










  • $begingroup$
    $displaystyle int e^{x} ln(x) dx = e^{x} ln(x) - int frac{e^x}{x} dx$, and $displaystyleint_{-infty}^x frac{e^t}{t}dt = text{Ei}(x)$ a special function, see fr.wikipedia.org/wiki/Exponentielle_int%C3%A9grale
    $endgroup$
    – LAGRIDA
    Mar 18 at 13:56


















0












$begingroup$


Is there a way to evaluate $int e^frac{1}{sqrt{x}}dx$



I first used substitution, I let $frac{1}{sqrt{x}}=uimplies frac{-1}{2}x^frac{-3}{2}dx=du$ and also $x^frac{-3}{2}=u^3$ so $dx=-2u^{-3}du$



After substituting, I now have to evaluate
$-2int u^{-3}e^u du$ .



I then used integration by parts and ended up with
$-2u^{-3}e^u+u^{-1}e^u-2e^uln u+2int e^uln u du$



This is where I got the problem










share|cite|improve this question









$endgroup$












  • $begingroup$
    Is this a part of finding a definite integral, or are you looking for an anti-derivative? I don't think there is an elementary anti-derivative, so it will probably involve special functions.
    $endgroup$
    – StackTD
    Mar 18 at 13:38












  • $begingroup$
    Ok, thank you StackTD
    $endgroup$
    – mamotebang
    Mar 18 at 13:45










  • $begingroup$
    $displaystyle int e^{x} ln(x) dx = e^{x} ln(x) - int frac{e^x}{x} dx$, and $displaystyleint_{-infty}^x frac{e^t}{t}dt = text{Ei}(x)$ a special function, see fr.wikipedia.org/wiki/Exponentielle_int%C3%A9grale
    $endgroup$
    – LAGRIDA
    Mar 18 at 13:56
















0












0








0





$begingroup$


Is there a way to evaluate $int e^frac{1}{sqrt{x}}dx$



I first used substitution, I let $frac{1}{sqrt{x}}=uimplies frac{-1}{2}x^frac{-3}{2}dx=du$ and also $x^frac{-3}{2}=u^3$ so $dx=-2u^{-3}du$



After substituting, I now have to evaluate
$-2int u^{-3}e^u du$ .



I then used integration by parts and ended up with
$-2u^{-3}e^u+u^{-1}e^u-2e^uln u+2int e^uln u du$



This is where I got the problem










share|cite|improve this question









$endgroup$




Is there a way to evaluate $int e^frac{1}{sqrt{x}}dx$



I first used substitution, I let $frac{1}{sqrt{x}}=uimplies frac{-1}{2}x^frac{-3}{2}dx=du$ and also $x^frac{-3}{2}=u^3$ so $dx=-2u^{-3}du$



After substituting, I now have to evaluate
$-2int u^{-3}e^u du$ .



I then used integration by parts and ended up with
$-2u^{-3}e^u+u^{-1}e^u-2e^uln u+2int e^uln u du$



This is where I got the problem







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 18 at 13:36









mamotebangmamotebang

152




152












  • $begingroup$
    Is this a part of finding a definite integral, or are you looking for an anti-derivative? I don't think there is an elementary anti-derivative, so it will probably involve special functions.
    $endgroup$
    – StackTD
    Mar 18 at 13:38












  • $begingroup$
    Ok, thank you StackTD
    $endgroup$
    – mamotebang
    Mar 18 at 13:45










  • $begingroup$
    $displaystyle int e^{x} ln(x) dx = e^{x} ln(x) - int frac{e^x}{x} dx$, and $displaystyleint_{-infty}^x frac{e^t}{t}dt = text{Ei}(x)$ a special function, see fr.wikipedia.org/wiki/Exponentielle_int%C3%A9grale
    $endgroup$
    – LAGRIDA
    Mar 18 at 13:56




















  • $begingroup$
    Is this a part of finding a definite integral, or are you looking for an anti-derivative? I don't think there is an elementary anti-derivative, so it will probably involve special functions.
    $endgroup$
    – StackTD
    Mar 18 at 13:38












  • $begingroup$
    Ok, thank you StackTD
    $endgroup$
    – mamotebang
    Mar 18 at 13:45










  • $begingroup$
    $displaystyle int e^{x} ln(x) dx = e^{x} ln(x) - int frac{e^x}{x} dx$, and $displaystyleint_{-infty}^x frac{e^t}{t}dt = text{Ei}(x)$ a special function, see fr.wikipedia.org/wiki/Exponentielle_int%C3%A9grale
    $endgroup$
    – LAGRIDA
    Mar 18 at 13:56


















$begingroup$
Is this a part of finding a definite integral, or are you looking for an anti-derivative? I don't think there is an elementary anti-derivative, so it will probably involve special functions.
$endgroup$
– StackTD
Mar 18 at 13:38






$begingroup$
Is this a part of finding a definite integral, or are you looking for an anti-derivative? I don't think there is an elementary anti-derivative, so it will probably involve special functions.
$endgroup$
– StackTD
Mar 18 at 13:38














$begingroup$
Ok, thank you StackTD
$endgroup$
– mamotebang
Mar 18 at 13:45




$begingroup$
Ok, thank you StackTD
$endgroup$
– mamotebang
Mar 18 at 13:45












$begingroup$
$displaystyle int e^{x} ln(x) dx = e^{x} ln(x) - int frac{e^x}{x} dx$, and $displaystyleint_{-infty}^x frac{e^t}{t}dt = text{Ei}(x)$ a special function, see fr.wikipedia.org/wiki/Exponentielle_int%C3%A9grale
$endgroup$
– LAGRIDA
Mar 18 at 13:56






$begingroup$
$displaystyle int e^{x} ln(x) dx = e^{x} ln(x) - int frac{e^x}{x} dx$, and $displaystyleint_{-infty}^x frac{e^t}{t}dt = text{Ei}(x)$ a special function, see fr.wikipedia.org/wiki/Exponentielle_int%C3%A9grale
$endgroup$
– LAGRIDA
Mar 18 at 13:56












0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152794%2fintegral-of-e-frac1-sqrtx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152794%2fintegral-of-e-frac1-sqrtx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Nidaros erkebispedøme

Birsay

Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...