Evaluating $int_0^l (lx-x^2)sinleft(frac{npi x}{l}right),mathrm{d}x$Evaluating the integral, $int_{0}^{infty}...

Can compressed videos be decoded back to their uncompresed original format?

Implication of namely

Sums of two squares in arithmetic progressions

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Can a virus destroy the BIOS of a modern computer?

Does the Idaho Potato Commission associate potato skins with healthy eating?

What is the fastest integer factorization to break RSA?

What are the G forces leaving Earth orbit?

Mathematica command that allows it to read my intentions

Is it possible to map the firing of neurons in the human brain so as to stimulate artificial memories in someone else?

Is it possible to create a QR code using text?

How exploitable/balanced is this homebrew spell: Spell Permanency?

What does the same-ish mean?

Forgetting the musical notes while performing in concert

Do Iron Man suits sport waste management systems?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

files created then deleted at every second in tmp directory

Different meanings of こわい

Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?

Should I tell management that I intend to leave due to bad software development practices?

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

How many wives did king shaul have

How to show a landlord what we have in savings?

How do I exit BASH while loop using modulus operator?



Evaluating $int_0^l (lx-x^2)sinleft(frac{npi x}{l}right),mathrm{d}x$


Evaluating the integral, $int_{0}^{infty} lnleft(1 - e^{-x}right) ,mathrm dx $Evaluating the definite integral $int_0^infty frac{mathrm{e}^x}{left(mathrm{e}^x-1right)^2},x^n ,mathrm{d}x$Evaluating $int_0^{largefrac{pi}{4}} logleft( cos xright) , mathrm{d}x $Can we simplify $int_0^{pi}left(frac{sin nx}{sin x}right)^mdx$?Assistance evaluating $int_0^{2pi}frac{1}{2}left(2 sin theta + cos thetaright)dtheta$Evaluating $int_0^infty int_0^infty frac{x^2 + y^2}{1 + (x^2 - y^2)^2} e^{-2xy} :mathrm{d}x :mathrm{d}y$Closed form of $int_0^1int_0^1int_0^1frac{left(1-x^yright)left(1-x^zright)ln x}{(1-x)^3},mathrm dx;mathrm dy;mathrm dz$Evaluate :$int_0^1 frac{1}{left(1+sqrt{frac{1}{x}-1}right)(x^2-x-1)}mathrm dx$Evaluating the integral: $intlimits_{0}^{infty}left(frac{sin(ax)}{x}right)^2 dx , a neq 0 $How to integrate $int_0^{pi/2}frac{1}{sin^2(x)-sin(x)cos(x)+cos^2(x)},mathrm{d}x$













-2












$begingroup$


I am stuck on evaluating the following definite integral:



$$int_0^l (lx-x^2)sinleft(frac{npi x}{l}right) , mathrm{d}x$$



Aprreciate any help!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use Integration by parts en.wikipedia.org/wiki/Integration_by_parts
    $endgroup$
    – Mostafa Ayaz
    Mar 18 at 13:12
















-2












$begingroup$


I am stuck on evaluating the following definite integral:



$$int_0^l (lx-x^2)sinleft(frac{npi x}{l}right) , mathrm{d}x$$



Aprreciate any help!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Use Integration by parts en.wikipedia.org/wiki/Integration_by_parts
    $endgroup$
    – Mostafa Ayaz
    Mar 18 at 13:12














-2












-2








-2





$begingroup$


I am stuck on evaluating the following definite integral:



$$int_0^l (lx-x^2)sinleft(frac{npi x}{l}right) , mathrm{d}x$$



Aprreciate any help!










share|cite|improve this question











$endgroup$




I am stuck on evaluating the following definite integral:



$$int_0^l (lx-x^2)sinleft(frac{npi x}{l}right) , mathrm{d}x$$



Aprreciate any help!







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 18 at 13:31









StubbornAtom

6,29831440




6,29831440










asked Mar 18 at 13:10









mallorie000383mallorie000383

1




1












  • $begingroup$
    Use Integration by parts en.wikipedia.org/wiki/Integration_by_parts
    $endgroup$
    – Mostafa Ayaz
    Mar 18 at 13:12


















  • $begingroup$
    Use Integration by parts en.wikipedia.org/wiki/Integration_by_parts
    $endgroup$
    – Mostafa Ayaz
    Mar 18 at 13:12
















$begingroup$
Use Integration by parts en.wikipedia.org/wiki/Integration_by_parts
$endgroup$
– Mostafa Ayaz
Mar 18 at 13:12




$begingroup$
Use Integration by parts en.wikipedia.org/wiki/Integration_by_parts
$endgroup$
– Mostafa Ayaz
Mar 18 at 13:12










1 Answer
1






active

oldest

votes


















0












$begingroup$

Hint:



$$int P(t)sin t,dt=-P(t)cos t+int P'(t)cos t,dt=-P(t)cos t+ P'(t)sin t,dt-int P''(t)cos t,dt.$$



Also notice that $P$ and the sine vanish at the bounds, so that only the last term remains.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152762%2fevaluating-int-0l-lx-x2-sin-left-fracn-pi-xl-right-mathrmdx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Hint:



    $$int P(t)sin t,dt=-P(t)cos t+int P'(t)cos t,dt=-P(t)cos t+ P'(t)sin t,dt-int P''(t)cos t,dt.$$



    Also notice that $P$ and the sine vanish at the bounds, so that only the last term remains.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Hint:



      $$int P(t)sin t,dt=-P(t)cos t+int P'(t)cos t,dt=-P(t)cos t+ P'(t)sin t,dt-int P''(t)cos t,dt.$$



      Also notice that $P$ and the sine vanish at the bounds, so that only the last term remains.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Hint:



        $$int P(t)sin t,dt=-P(t)cos t+int P'(t)cos t,dt=-P(t)cos t+ P'(t)sin t,dt-int P''(t)cos t,dt.$$



        Also notice that $P$ and the sine vanish at the bounds, so that only the last term remains.






        share|cite|improve this answer









        $endgroup$



        Hint:



        $$int P(t)sin t,dt=-P(t)cos t+int P'(t)cos t,dt=-P(t)cos t+ P'(t)sin t,dt-int P''(t)cos t,dt.$$



        Also notice that $P$ and the sine vanish at the bounds, so that only the last term remains.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 18 at 13:30









        Yves DaoustYves Daoust

        132k676229




        132k676229






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152762%2fevaluating-int-0l-lx-x2-sin-left-fracn-pi-xl-right-mathrmdx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Nidaros erkebispedøme

            Birsay

            Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...