Mathematical proof regarding angle mirroringTriangle and parallel lines, find angle xWould $angle{BAC} $...
Am I breaking OOP practice with this architecture?
How could indestructible materials be used in power generation?
What Exploit Are These User Agents Trying to Use?
What is the most common color to indicate the input-field is disabled?
Unlock My Phone! February 2018
Should I tell management that I intend to leave due to bad software development practices?
Where would I need my direct neural interface to be implanted?
Getting extremely large arrows with tikzcd
Placement of More Information/Help Icon button for Radio Buttons
How obscure is the use of 令 in 令和?
Was the old ablative pronoun "med" or "mēd"?
Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?
How many wives did king shaul have
How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?
How to travel to Japan while expressing milk?
Why do I get negative height?
Using "tail" to follow a file without displaying the most recent lines
Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?
Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)
Avoiding the "not like other girls" trope?
Can someone clarify Hamming's notion of important problems in relation to modern academia?
Is it inappropriate for a student to attend their mentor's dissertation defense?
Car headlights in a world without electricity
How can saying a song's name be a copyright violation?
Mathematical proof regarding angle mirroring
Triangle and parallel lines, find angle xWould $angle{BAC} $ become $180^circ $ if we go on increasing the length of $AB$?Help Drawing Figure and Understanding ProofHelp Finishing Proof Involving Collinearity and Cyclic QuadsHelp Finishing Proof ?!In the following diagram of a triangle, AB = BC = CD and AD = BD. Find the measure of angle D.Find the area of the parallelogram given perimeter, one angle and the proportion of heights$P$ is a point on the angular bisector of $angle A$. Show that $frac{1}{AB}+frac{1}{AC}$ doesn't depend on the line through $P$Solving for the value of $ angle CEB$ - $frac{1}{4}$ $angle CBA$ where $E$ is an exterior point of $triangle ABC$Trisecting an angle $theta$ equally via applying trigonometry
$begingroup$
I'm trying to find a proof for a statement that is made in Griffiths' Introduction to Electrodynamics. It can be stated as follows (in my own words):
Let $P$ be a point such that its angle in polar coordinates is given by $theta>0$. Let $beta > theta$ be the angle between any two lines in the 2D plane. Then, if we try to find all the points such that both lines act as mirrors, if $beta$ is an integer divisor of $180$, all of these points will fall outside the region delimited by the angular interval $(0, beta)$, independently of the value of $thetain (0,beta)$.
Let me show some examples to make this clearer.
Example 1
$beta = 45^circ$, $theta = 30^circ$
The red dot represents the original $P$ point. Note that the blue points are placed in a way that make the lines with slope $0$ and $beta$ 'mirrors'. Due to the fact that $beta = frac{180^circ}{4}$, no blue dots appear inside the region delimited by the black lines.
Example 2
$beta = 50^circ$, $theta = 15^circ$
In this case, due to the fact that $frac{180^circ}{beta}$ is not an integer, blue dots appear inside the region delimited by the black lines. This is, however, not general. It is possible to find pairs of values of $theta$ and $beta$ such that no blue dots appear in the region, but it is not likely.
I've tried with some values and the statement made by Griffiths seems to be valid. Is there a way to prove this generically?
geometry proof-writing polar-coordinates angle
$endgroup$
add a comment |
$begingroup$
I'm trying to find a proof for a statement that is made in Griffiths' Introduction to Electrodynamics. It can be stated as follows (in my own words):
Let $P$ be a point such that its angle in polar coordinates is given by $theta>0$. Let $beta > theta$ be the angle between any two lines in the 2D plane. Then, if we try to find all the points such that both lines act as mirrors, if $beta$ is an integer divisor of $180$, all of these points will fall outside the region delimited by the angular interval $(0, beta)$, independently of the value of $thetain (0,beta)$.
Let me show some examples to make this clearer.
Example 1
$beta = 45^circ$, $theta = 30^circ$
The red dot represents the original $P$ point. Note that the blue points are placed in a way that make the lines with slope $0$ and $beta$ 'mirrors'. Due to the fact that $beta = frac{180^circ}{4}$, no blue dots appear inside the region delimited by the black lines.
Example 2
$beta = 50^circ$, $theta = 15^circ$
In this case, due to the fact that $frac{180^circ}{beta}$ is not an integer, blue dots appear inside the region delimited by the black lines. This is, however, not general. It is possible to find pairs of values of $theta$ and $beta$ such that no blue dots appear in the region, but it is not likely.
I've tried with some values and the statement made by Griffiths seems to be valid. Is there a way to prove this generically?
geometry proof-writing polar-coordinates angle
$endgroup$
$begingroup$
Do you also assume that the angle domain of $β$ measure contains the point $P$ ?
$endgroup$
– dmtri
Mar 18 at 14:08
$begingroup$
@dmtri Yes, $theta$ must lie between $0$ and $beta$.
$endgroup$
– Tendero
Mar 18 at 14:10
add a comment |
$begingroup$
I'm trying to find a proof for a statement that is made in Griffiths' Introduction to Electrodynamics. It can be stated as follows (in my own words):
Let $P$ be a point such that its angle in polar coordinates is given by $theta>0$. Let $beta > theta$ be the angle between any two lines in the 2D plane. Then, if we try to find all the points such that both lines act as mirrors, if $beta$ is an integer divisor of $180$, all of these points will fall outside the region delimited by the angular interval $(0, beta)$, independently of the value of $thetain (0,beta)$.
Let me show some examples to make this clearer.
Example 1
$beta = 45^circ$, $theta = 30^circ$
The red dot represents the original $P$ point. Note that the blue points are placed in a way that make the lines with slope $0$ and $beta$ 'mirrors'. Due to the fact that $beta = frac{180^circ}{4}$, no blue dots appear inside the region delimited by the black lines.
Example 2
$beta = 50^circ$, $theta = 15^circ$
In this case, due to the fact that $frac{180^circ}{beta}$ is not an integer, blue dots appear inside the region delimited by the black lines. This is, however, not general. It is possible to find pairs of values of $theta$ and $beta$ such that no blue dots appear in the region, but it is not likely.
I've tried with some values and the statement made by Griffiths seems to be valid. Is there a way to prove this generically?
geometry proof-writing polar-coordinates angle
$endgroup$
I'm trying to find a proof for a statement that is made in Griffiths' Introduction to Electrodynamics. It can be stated as follows (in my own words):
Let $P$ be a point such that its angle in polar coordinates is given by $theta>0$. Let $beta > theta$ be the angle between any two lines in the 2D plane. Then, if we try to find all the points such that both lines act as mirrors, if $beta$ is an integer divisor of $180$, all of these points will fall outside the region delimited by the angular interval $(0, beta)$, independently of the value of $thetain (0,beta)$.
Let me show some examples to make this clearer.
Example 1
$beta = 45^circ$, $theta = 30^circ$
The red dot represents the original $P$ point. Note that the blue points are placed in a way that make the lines with slope $0$ and $beta$ 'mirrors'. Due to the fact that $beta = frac{180^circ}{4}$, no blue dots appear inside the region delimited by the black lines.
Example 2
$beta = 50^circ$, $theta = 15^circ$
In this case, due to the fact that $frac{180^circ}{beta}$ is not an integer, blue dots appear inside the region delimited by the black lines. This is, however, not general. It is possible to find pairs of values of $theta$ and $beta$ such that no blue dots appear in the region, but it is not likely.
I've tried with some values and the statement made by Griffiths seems to be valid. Is there a way to prove this generically?
geometry proof-writing polar-coordinates angle
geometry proof-writing polar-coordinates angle
edited Mar 18 at 15:38
Tendero
asked Mar 18 at 13:58
TenderoTendero
378214
378214
$begingroup$
Do you also assume that the angle domain of $β$ measure contains the point $P$ ?
$endgroup$
– dmtri
Mar 18 at 14:08
$begingroup$
@dmtri Yes, $theta$ must lie between $0$ and $beta$.
$endgroup$
– Tendero
Mar 18 at 14:10
add a comment |
$begingroup$
Do you also assume that the angle domain of $β$ measure contains the point $P$ ?
$endgroup$
– dmtri
Mar 18 at 14:08
$begingroup$
@dmtri Yes, $theta$ must lie between $0$ and $beta$.
$endgroup$
– Tendero
Mar 18 at 14:10
$begingroup$
Do you also assume that the angle domain of $β$ measure contains the point $P$ ?
$endgroup$
– dmtri
Mar 18 at 14:08
$begingroup$
Do you also assume that the angle domain of $β$ measure contains the point $P$ ?
$endgroup$
– dmtri
Mar 18 at 14:08
$begingroup$
@dmtri Yes, $theta$ must lie between $0$ and $beta$.
$endgroup$
– Tendero
Mar 18 at 14:10
$begingroup$
@dmtri Yes, $theta$ must lie between $0$ and $beta$.
$endgroup$
– Tendero
Mar 18 at 14:10
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $ell_1$ and $ell_2$ be the two mirror lines, and assume $beta={piover n}$. Denote the reflections in the $ell_i$ by $rho_i$. You then obtain blue points from the starting red point $P$ by applying alternatively $rho_1$ and $rho_2$. Now it is easy to see that $rho_2circrho_1$ is a rotation by the angle $alpha=|2beta|={2piover n}$ in one of the two directions. It follows that $(rho_2circrho_1)^n$ is the identity, hence gives back $P$. In all you obtain the $2n$ points $$(rho_2circrho_1)^k (P)quad(0leq kleq n-1),qquad (rho_2circrho_1)^kcircrho_2 (P)quadquad(0leq kleq n-1) ,$$
one in each sector of central angle $beta={2piover 2n}$.
$endgroup$
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152821%2fmathematical-proof-regarding-angle-mirroring%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $ell_1$ and $ell_2$ be the two mirror lines, and assume $beta={piover n}$. Denote the reflections in the $ell_i$ by $rho_i$. You then obtain blue points from the starting red point $P$ by applying alternatively $rho_1$ and $rho_2$. Now it is easy to see that $rho_2circrho_1$ is a rotation by the angle $alpha=|2beta|={2piover n}$ in one of the two directions. It follows that $(rho_2circrho_1)^n$ is the identity, hence gives back $P$. In all you obtain the $2n$ points $$(rho_2circrho_1)^k (P)quad(0leq kleq n-1),qquad (rho_2circrho_1)^kcircrho_2 (P)quadquad(0leq kleq n-1) ,$$
one in each sector of central angle $beta={2piover 2n}$.
$endgroup$
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
add a comment |
$begingroup$
Let $ell_1$ and $ell_2$ be the two mirror lines, and assume $beta={piover n}$. Denote the reflections in the $ell_i$ by $rho_i$. You then obtain blue points from the starting red point $P$ by applying alternatively $rho_1$ and $rho_2$. Now it is easy to see that $rho_2circrho_1$ is a rotation by the angle $alpha=|2beta|={2piover n}$ in one of the two directions. It follows that $(rho_2circrho_1)^n$ is the identity, hence gives back $P$. In all you obtain the $2n$ points $$(rho_2circrho_1)^k (P)quad(0leq kleq n-1),qquad (rho_2circrho_1)^kcircrho_2 (P)quadquad(0leq kleq n-1) ,$$
one in each sector of central angle $beta={2piover 2n}$.
$endgroup$
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
add a comment |
$begingroup$
Let $ell_1$ and $ell_2$ be the two mirror lines, and assume $beta={piover n}$. Denote the reflections in the $ell_i$ by $rho_i$. You then obtain blue points from the starting red point $P$ by applying alternatively $rho_1$ and $rho_2$. Now it is easy to see that $rho_2circrho_1$ is a rotation by the angle $alpha=|2beta|={2piover n}$ in one of the two directions. It follows that $(rho_2circrho_1)^n$ is the identity, hence gives back $P$. In all you obtain the $2n$ points $$(rho_2circrho_1)^k (P)quad(0leq kleq n-1),qquad (rho_2circrho_1)^kcircrho_2 (P)quadquad(0leq kleq n-1) ,$$
one in each sector of central angle $beta={2piover 2n}$.
$endgroup$
Let $ell_1$ and $ell_2$ be the two mirror lines, and assume $beta={piover n}$. Denote the reflections in the $ell_i$ by $rho_i$. You then obtain blue points from the starting red point $P$ by applying alternatively $rho_1$ and $rho_2$. Now it is easy to see that $rho_2circrho_1$ is a rotation by the angle $alpha=|2beta|={2piover n}$ in one of the two directions. It follows that $(rho_2circrho_1)^n$ is the identity, hence gives back $P$. In all you obtain the $2n$ points $$(rho_2circrho_1)^k (P)quad(0leq kleq n-1),qquad (rho_2circrho_1)^kcircrho_2 (P)quadquad(0leq kleq n-1) ,$$
one in each sector of central angle $beta={2piover 2n}$.
answered Mar 18 at 15:54
Christian BlatterChristian Blatter
176k8115327
176k8115327
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
add a comment |
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
$begingroup$
Thanks for your answer. It's short and clear. Is there a way to extend the proof to explain why if $beta neq pi /n$, it is posible to find value/s of $theta$ such that blue dots will appear inside the region of interest (which is not posible if $beta = pi /n$, as you have just shown)?
$endgroup$
– Tendero
Mar 18 at 16:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152821%2fmathematical-proof-regarding-angle-mirroring%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you also assume that the angle domain of $β$ measure contains the point $P$ ?
$endgroup$
– dmtri
Mar 18 at 14:08
$begingroup$
@dmtri Yes, $theta$ must lie between $0$ and $beta$.
$endgroup$
– Tendero
Mar 18 at 14:10