Ring Automorphisms that fix 1. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbbR^n$group of automorphisms of the ring $mathbbZtimesmathbbZ$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbbQ[sqrt[3]5]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbbQ(sqrt[4]2)/mathbbQ$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?
Why did the IBM 650 use bi-quinary?
Is it true that "carbohydrates are of no use for the basal metabolic need"?
Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?
Seeking colloquialism for “just because”
When do you get frequent flier miles - when you buy, or when you fly?
List of Python versions
How does debian/ubuntu knows a package has a updated version
Echoing a tail command produces unexpected output?
How do I keep my slimes from escaping their pens?
Extract all GPU name, model and GPU ram
How to answer "Have you ever been terminated?"
How to react to hostile behavior from a senior developer?
When a candle burns, why does the top of wick glow if bottom of flame is hottest?
Using audio cues to encourage good posture
Why was the term "discrete" used in discrete logarithm?
Fundamental Solution of the Pell Equation
Can I cast Passwall to drop an enemy into a 20-foot pit?
Resolving to minmaj7
2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?
What is a non-alternating simple group with big order, but relatively few conjugacy classes?
Can an alien society believe that their star system is the universe?
Check which numbers satisfy the condition [A*B*C = A! + B! + C!]
Can a non-EU citizen traveling with me come with me through the EU passport line?
Error "illegal generic type for instanceof" when using local classes
Ring Automorphisms that fix 1.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbbR^n$group of automorphisms of the ring $mathbbZtimesmathbbZ$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbbQ[sqrt[3]5]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbbQ(sqrt[4]2)/mathbbQ$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
add a comment |
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
add a comment |
$begingroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
$endgroup$
This question is a follow - up to this question about Field Automorphisms of $mathbbQ[sqrt2]$.
Since $mathbbQ[sqrt2]$ is a vector space over $mathbbQ$ with basis $1, sqrt2$, I naively understand why it is the case that automorphisms $phi$ of $mathbbQ[sqrt2]$ are determined wholly by the image of $1$ and $sqrt2$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt2) = sqrt2$, and I want to compute the value of $phi(frac32)$. I can do the following:
$$ phi(frac32) = phi(3) phi(frac12) = [phi(1) + phi(1) + phi(1)] phi(frac12) = 3phi(frac12).$$
I am unsure how to proceed from here. I would assume that it is true that $$phi(frac11 + 1) = fracphi(1)phi(1) + phi(1) = frac12,$$ but I don't know what property of ring isomorphisms would allow me to do this.
abstract-algebra ring-theory field-theory galois-theory
abstract-algebra ring-theory field-theory galois-theory
asked 3 hours ago
Solarflare0Solarflare0
9813
9813
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
add a comment |
$begingroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
$endgroup$
$$
2phi(frac32) = phi(3) = 3phi(1) = 3
implies
phi(frac32) =frac32
$$
Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.
answered 3 hours ago
lhflhf
168k11172405
168k11172405
add a comment |
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
add a comment |
$begingroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
$endgroup$
Every automorphism fixes $mathbbQ$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbbQ$.
For the proof, we assume WLOG that $mathbbQ subseteq K$. Then:
$phi$ fixes $0$ and $1$, by definition.
$phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.
$phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.
$phi$ fixes all rational numbers, since $n cdot phileft(fracmnright) = phi(m) = m$, so $phileft(fracmnright) = fracmn$.
More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbbQ$, since all automorphisms fix $mathbbQ$, such a restriction is unnecessary.
answered 2 hours ago
60056005
37.1k752127
37.1k752127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown