特異点 (数学)
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2018年5月) |
数学において、特異性(とくいせい、英: singularity)とは、適当な枠組みの下で考えている数学的対象が「定義されない」「よく振舞わない」などと言ったことを理由に除外されること、もの、およびその基準である。特異性を示す点を特異点(とくいてん、singular point)という。
これに対して、ある枠組みの中で、よく振舞う (well-behaved) ならば非特異 (non-singular) または正則 (regular) であると言われる。
目次
1 実解析における特異性
2 複素解析における特異性
3 代数幾何における特異性
4 函数方程式論における特異性
5 微分幾何における特異性
6 関連項目
7 注
7.1 注釈
7.2 出典
8 外部リンク
実解析における特異性
詳細は「不連続性の分類」を参照
実解析においては、実函数に対してしばしば連続性を基準に取り、函数の連続性に関して正則な振舞いをする点を連続点、特異な振舞いをする点を不連続点と呼ぶ。実函数の不連続性には二つの種別があり、またそれぞれの種別はそれぞれ二通りに細分される。
- 第一種不連続点:
- 可除不連続点
- 跳躍不連続点
- 第二種不連続点:
- 無限不連続点
- 真性不連続点
複素解析における特異性
詳細は「孤立特異点」を参照
複素解析においては、複素函数に対してしばしば微分可能性あるいは解析性を基準として、正則性、特異性を論じる。
孤立特異点 (isolated singularity): 特定の点における函数の有界性からのズレを示すもの
可除特異点 (removable singularity)
極 (pole)
真性特異点 (essential singularity)
分岐点: 解析接続に関して一価の函数が多価性を示すこと
代数幾何における特異性
詳細は「代数多様体の特異点」を参照
代数幾何における特異性は、多様体あるいは環の局所化が正則局所環とはならないこと。
- fill in: 結節点、重複点、尖点、孤立点
「曲線の特異点」および「特異点解消」も参照
函数方程式論における特異性
- fill in: 確定特異点(正則特異点/フックス型特異点[1])、動く特異点
微分幾何における特異性
詳細は「臨界点 (数学)」を参照
微分がランク落ちするような点を臨界点、フルランクの点を正常点とする
関連項目
- 特異点論
超局所解析 (microlocal analysis)- ローラン展開
注
注釈
出典
^ fuchsian singularity - PlanetMath.(英語)
外部リンク
- 阿部, 剛久「特異性の概念は近代数学へ如何に寄与したか (I): 初期の概念とその背景 (PDF) 」 、『数理解析研究所講究録』第1317巻、2003年5月、 39–49。
- 阿部, 剛久、ニッケル, グレゴール「特異性の概念は近代数学へ如何に寄与したか (II): 特異性問題に関する近代数学の発展・形成:1880–1940s (PDF) 」 、『数理解析研究所講究録』第1392巻、2004年9月、 149–162。
- 阿部, 剛久「特異性の概念は近代数学へ如何に寄与したか (III)-1: 20世紀後半から現代に至る主題の展望,および未知の課題をめぐって (PDF) 」 、『数理解析研究所講究録』第1546巻、2007年4月、 88–103。
- 阿部, 剛久「特異性の概念は近代数学へ如何に寄与したか (III)-2: 20世紀後半の主題 (1):前半から引き継ぐもの(初期概念の系列) (PDF) 」 、『数理解析研究所講究録』第1625巻、2009年1月、 95–107。
- 阿部, 剛久「特異性の概念は近代数学へ如何に寄与したか (III)-2: 20世紀後半の主題 (2):前半から引き継ぐもの(新概念と応用の系列) (PDF) 」 、『数理解析研究所講究録』第1677巻、2010年4月、 103–119。
- 阿部, 剛久「特異性の概念は近代数学へ如何に寄与したか (III)-2: 20世紀後半の主題 (3):後半からの新しいもの(新々概念と応用の系列) (PDF) 」 、『数理解析研究所講究録』第1739巻、2011年4月、 251–263。
Weisstein, Eric W. "Singularity". MathWorld(英語)..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em} / Weisstein, Eric W. "Singular Point". MathWorld(英語).
singularity in nLab / singular point in nLab
Solomentsev, E.D. (2001), "Singularity", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4 / Solomentsev, E.D. (2001), "Singular point", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4