Show that $19^{31}>13^{33}$If $displaystyle x= frac{e^{3z}}{y^4}$ then $z(x,y)$?Algebra and exponentsI'm...

Align equations with text before one of them

The past tense for the quoting particle って

Can a Mimic (container form) actually hold loot?

What is the purpose of a disclaimer like "this is not legal advice"?

Sundering Titan and basic normal lands and snow lands

Deal the cards to the players

PTiJ: How should animals pray?

Create chunks from an array

Rationale to prefer local variables over instance variables?

What is the meaning of option 'by' in TikZ Intersections

What's the best tool for cutting holes into duct work?

Did Amazon pay $0 in taxes last year?

Should I use HTTPS on a domain that will only be used for redirection?

Called into a meeting and told we are being made redundant (laid off) and "not to share outside". Can I tell my partner?

Practical reasons to have both a large police force and bounty hunting network?

What is Tony Stark injecting into himself in Iron Man 3?

When to use the term transposed instead of modulation?

How can I be pwned if I'm not registered on the compromised site?

Does the US political system, in principle, allow for a no-party system?

Why doesn't "adolescent" take any articles in "listen to adolescent agonising"?

Can you run a ground wire from stove directly to ground pole in the ground

Convert an array of objects to array of the objects' values

How do we objectively assess if a dialogue sounds unnatural or cringy?

Dukha vs legitimate need



Show that $19^{31}>13^{33}$


If $displaystyle x= frac{e^{3z}}{y^4}$ then $z(x,y)$?Algebra and exponentsI'm stuck with this summation problemshow a function remains positive for a given domain$b>a>0$ , how to prove that $Big(dfrac {sqrt a +sqrt b}{2}Big )^2 < dfrac 1e Big(dfrac {b^b} {a^a}Big)^{dfrac 1{b-a}}$?Simplify $(frac{x+5}{x^2-81} + frac{x+7}{x^2-18x+81}):(frac{x+3}{x-9})^2 + frac{7+x}{9+x}$Which one is bigger? Logarithms and trigonometric functionsFinding $ lim_{xrightarrow 0}frac{(1+x)^{frac{1}{x}}-e+frac{ex}{2}}{x^2}$ without using series expansion.maximum value of expression $(sqrt{-3+4x-x^2}+4)^2+(x-5)^2$Coefficient of $x^{n-3}$ in $prod^{n}_{k=1}(x-k)$













3












$begingroup$



How can i prove that $19^{31}>13^{33}$?




What I tried



$$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$



How do I show it. Help me please.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$



    How can i prove that $19^{31}>13^{33}$?




    What I tried



    $$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
    then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$



    How do I show it. Help me please.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      1



      $begingroup$



      How can i prove that $19^{31}>13^{33}$?




      What I tried



      $$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
      then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$



      How do I show it. Help me please.










      share|cite|improve this question











      $endgroup$





      How can i prove that $19^{31}>13^{33}$?




      What I tried



      $$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
      then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$



      How do I show it. Help me please.







      algebra-precalculus exponential-function number-comparison






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 11 hours ago









      Michael Rozenberg

      107k1894198




      107k1894198










      asked 15 hours ago









      jackyjacky

      960615




      960615






















          7 Answers
          7






          active

          oldest

          votes


















          7












          $begingroup$

          Note that by the binomial theorem
          $$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
          which implies that $19^{31}>13^{33}$.



          Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Solved bonus below(before seeing it posted).
            $endgroup$
            – miniparser
            14 hours ago



















          6












          $begingroup$

          $$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$



          $$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$



          Clearly $$2^{15}geq 13cdot 9implies A>B$$






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
            $x ln(19) > (x+2) ln(13)$
            and finally
            $ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.






            share|cite|improve this answer









            $endgroup$





















              2












              $begingroup$

              By your work
              $$frac{19^2}{13^2}>2,$$ which says
              $$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!



              By this way we can prove that
              $$19^{31}>13^{35}.$$






              share|cite|improve this answer











              $endgroup$





















                1












                $begingroup$

                $19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$



                $6859gt 3times 2197$



                $6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$



                $27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$






                share|cite|improve this answer









                $endgroup$





















                  1












                  $begingroup$

                  Well, using what you've got so far:



                  $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.



                  $19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.



                  =====



                  For what it's worth one way I might do it if it were up to me is to note.



                  $19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.



                  $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.



                  So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.






                  share|cite|improve this answer











                  $endgroup$





















                    1












                    $begingroup$

                    $left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$






                    share|cite|improve this answer









                    $endgroup$













                      Your Answer





                      StackExchange.ifUsing("editor", function () {
                      return StackExchange.using("mathjaxEditing", function () {
                      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                      });
                      });
                      }, "mathjax-editing");

                      StackExchange.ready(function() {
                      var channelOptions = {
                      tags: "".split(" "),
                      id: "69"
                      };
                      initTagRenderer("".split(" "), "".split(" "), channelOptions);

                      StackExchange.using("externalEditor", function() {
                      // Have to fire editor after snippets, if snippets enabled
                      if (StackExchange.settings.snippets.snippetsEnabled) {
                      StackExchange.using("snippets", function() {
                      createEditor();
                      });
                      }
                      else {
                      createEditor();
                      }
                      });

                      function createEditor() {
                      StackExchange.prepareEditor({
                      heartbeatType: 'answer',
                      autoActivateHeartbeat: false,
                      convertImagesToLinks: true,
                      noModals: true,
                      showLowRepImageUploadWarning: true,
                      reputationToPostImages: 10,
                      bindNavPrevention: true,
                      postfix: "",
                      imageUploader: {
                      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                      allowUrls: true
                      },
                      noCode: true, onDemand: true,
                      discardSelector: ".discard-answer"
                      ,immediatelyShowMarkdownHelp:true
                      });


                      }
                      });














                      draft saved

                      draft discarded


















                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3138786%2fshow-that-19311333%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown

























                      7 Answers
                      7






                      active

                      oldest

                      votes








                      7 Answers
                      7






                      active

                      oldest

                      votes









                      active

                      oldest

                      votes






                      active

                      oldest

                      votes









                      7












                      $begingroup$

                      Note that by the binomial theorem
                      $$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
                      which implies that $19^{31}>13^{33}$.



                      Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Solved bonus below(before seeing it posted).
                        $endgroup$
                        – miniparser
                        14 hours ago
















                      7












                      $begingroup$

                      Note that by the binomial theorem
                      $$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
                      which implies that $19^{31}>13^{33}$.



                      Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Solved bonus below(before seeing it posted).
                        $endgroup$
                        – miniparser
                        14 hours ago














                      7












                      7








                      7





                      $begingroup$

                      Note that by the binomial theorem
                      $$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
                      which implies that $19^{31}>13^{33}$.



                      Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?






                      share|cite|improve this answer











                      $endgroup$



                      Note that by the binomial theorem
                      $$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
                      which implies that $19^{31}>13^{33}$.



                      Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 14 hours ago

























                      answered 15 hours ago









                      Robert ZRobert Z

                      99.8k1068140




                      99.8k1068140












                      • $begingroup$
                        Solved bonus below(before seeing it posted).
                        $endgroup$
                        – miniparser
                        14 hours ago


















                      • $begingroup$
                        Solved bonus below(before seeing it posted).
                        $endgroup$
                        – miniparser
                        14 hours ago
















                      $begingroup$
                      Solved bonus below(before seeing it posted).
                      $endgroup$
                      – miniparser
                      14 hours ago




                      $begingroup$
                      Solved bonus below(before seeing it posted).
                      $endgroup$
                      – miniparser
                      14 hours ago











                      6












                      $begingroup$

                      $$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$



                      $$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$



                      Clearly $$2^{15}geq 13cdot 9implies A>B$$






                      share|cite|improve this answer









                      $endgroup$


















                        6












                        $begingroup$

                        $$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$



                        $$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$



                        Clearly $$2^{15}geq 13cdot 9implies A>B$$






                        share|cite|improve this answer









                        $endgroup$
















                          6












                          6








                          6





                          $begingroup$

                          $$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$



                          $$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$



                          Clearly $$2^{15}geq 13cdot 9implies A>B$$






                          share|cite|improve this answer









                          $endgroup$



                          $$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$



                          $$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$



                          Clearly $$2^{15}geq 13cdot 9implies A>B$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 15 hours ago









                          greedoidgreedoid

                          46.1k1160117




                          46.1k1160117























                              4












                              $begingroup$

                              Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
                              $x ln(19) > (x+2) ln(13)$
                              and finally
                              $ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.






                              share|cite|improve this answer









                              $endgroup$


















                                4












                                $begingroup$

                                Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
                                $x ln(19) > (x+2) ln(13)$
                                and finally
                                $ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.






                                share|cite|improve this answer









                                $endgroup$
















                                  4












                                  4








                                  4





                                  $begingroup$

                                  Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
                                  $x ln(19) > (x+2) ln(13)$
                                  and finally
                                  $ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.






                                  share|cite|improve this answer









                                  $endgroup$



                                  Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
                                  $x ln(19) > (x+2) ln(13)$
                                  and finally
                                  $ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered 15 hours ago









                                  Gâteau-GalloisGâteau-Gallois

                                  410213




                                  410213























                                      2












                                      $begingroup$

                                      By your work
                                      $$frac{19^2}{13^2}>2,$$ which says
                                      $$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!



                                      By this way we can prove that
                                      $$19^{31}>13^{35}.$$






                                      share|cite|improve this answer











                                      $endgroup$


















                                        2












                                        $begingroup$

                                        By your work
                                        $$frac{19^2}{13^2}>2,$$ which says
                                        $$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!



                                        By this way we can prove that
                                        $$19^{31}>13^{35}.$$






                                        share|cite|improve this answer











                                        $endgroup$
















                                          2












                                          2








                                          2





                                          $begingroup$

                                          By your work
                                          $$frac{19^2}{13^2}>2,$$ which says
                                          $$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!



                                          By this way we can prove that
                                          $$19^{31}>13^{35}.$$






                                          share|cite|improve this answer











                                          $endgroup$



                                          By your work
                                          $$frac{19^2}{13^2}>2,$$ which says
                                          $$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!



                                          By this way we can prove that
                                          $$19^{31}>13^{35}.$$







                                          share|cite|improve this answer














                                          share|cite|improve this answer



                                          share|cite|improve this answer








                                          edited 11 hours ago

























                                          answered 11 hours ago









                                          Michael RozenbergMichael Rozenberg

                                          107k1894198




                                          107k1894198























                                              1












                                              $begingroup$

                                              $19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$



                                              $6859gt 3times 2197$



                                              $6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$



                                              $27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$






                                              share|cite|improve this answer









                                              $endgroup$


















                                                1












                                                $begingroup$

                                                $19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$



                                                $6859gt 3times 2197$



                                                $6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$



                                                $27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$






                                                share|cite|improve this answer









                                                $endgroup$
















                                                  1












                                                  1








                                                  1





                                                  $begingroup$

                                                  $19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$



                                                  $6859gt 3times 2197$



                                                  $6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$



                                                  $27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$






                                                  share|cite|improve this answer









                                                  $endgroup$



                                                  $19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$



                                                  $6859gt 3times 2197$



                                                  $6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$



                                                  $27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$







                                                  share|cite|improve this answer












                                                  share|cite|improve this answer



                                                  share|cite|improve this answer










                                                  answered 14 hours ago









                                                  miniparserminiparser

                                                  7871616




                                                  7871616























                                                      1












                                                      $begingroup$

                                                      Well, using what you've got so far:



                                                      $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.



                                                      $19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.



                                                      =====



                                                      For what it's worth one way I might do it if it were up to me is to note.



                                                      $19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.



                                                      $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.



                                                      So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.






                                                      share|cite|improve this answer











                                                      $endgroup$


















                                                        1












                                                        $begingroup$

                                                        Well, using what you've got so far:



                                                        $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.



                                                        $19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.



                                                        =====



                                                        For what it's worth one way I might do it if it were up to me is to note.



                                                        $19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.



                                                        $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.



                                                        So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.






                                                        share|cite|improve this answer











                                                        $endgroup$
















                                                          1












                                                          1








                                                          1





                                                          $begingroup$

                                                          Well, using what you've got so far:



                                                          $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.



                                                          $19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.



                                                          =====



                                                          For what it's worth one way I might do it if it were up to me is to note.



                                                          $19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.



                                                          $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.



                                                          So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.






                                                          share|cite|improve this answer











                                                          $endgroup$



                                                          Well, using what you've got so far:



                                                          $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.



                                                          $19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.



                                                          =====



                                                          For what it's worth one way I might do it if it were up to me is to note.



                                                          $19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.



                                                          $(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.



                                                          So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.







                                                          share|cite|improve this answer














                                                          share|cite|improve this answer



                                                          share|cite|improve this answer








                                                          edited 10 hours ago

























                                                          answered 10 hours ago









                                                          fleabloodfleablood

                                                          71.9k22687




                                                          71.9k22687























                                                              1












                                                              $begingroup$

                                                              $left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$






                                                              share|cite|improve this answer









                                                              $endgroup$


















                                                                1












                                                                $begingroup$

                                                                $left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$






                                                                share|cite|improve this answer









                                                                $endgroup$
















                                                                  1












                                                                  1








                                                                  1





                                                                  $begingroup$

                                                                  $left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$






                                                                  share|cite|improve this answer









                                                                  $endgroup$



                                                                  $left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$







                                                                  share|cite|improve this answer












                                                                  share|cite|improve this answer



                                                                  share|cite|improve this answer










                                                                  answered 7 hours ago









                                                                  Bill DubuqueBill Dubuque

                                                                  212k29195650




                                                                  212k29195650






























                                                                      draft saved

                                                                      draft discarded




















































                                                                      Thanks for contributing an answer to Mathematics Stack Exchange!


                                                                      • Please be sure to answer the question. Provide details and share your research!

                                                                      But avoid



                                                                      • Asking for help, clarification, or responding to other answers.

                                                                      • Making statements based on opinion; back them up with references or personal experience.


                                                                      Use MathJax to format equations. MathJax reference.


                                                                      To learn more, see our tips on writing great answers.




                                                                      draft saved


                                                                      draft discarded














                                                                      StackExchange.ready(
                                                                      function () {
                                                                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3138786%2fshow-that-19311333%23new-answer', 'question_page');
                                                                      }
                                                                      );

                                                                      Post as a guest















                                                                      Required, but never shown





















































                                                                      Required, but never shown














                                                                      Required, but never shown












                                                                      Required, but never shown







                                                                      Required, but never shown

































                                                                      Required, but never shown














                                                                      Required, but never shown












                                                                      Required, but never shown







                                                                      Required, but never shown







                                                                      Popular posts from this blog

                                                                      Nidaros erkebispedøme

                                                                      Birsay

                                                                      Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...