Show that $19^{31}>13^{33}$If $displaystyle x= frac{e^{3z}}{y^4}$ then $z(x,y)$?Algebra and exponentsI'm...
Align equations with text before one of them
The past tense for the quoting particle って
Can a Mimic (container form) actually hold loot?
What is the purpose of a disclaimer like "this is not legal advice"?
Sundering Titan and basic normal lands and snow lands
Deal the cards to the players
PTiJ: How should animals pray?
Create chunks from an array
Rationale to prefer local variables over instance variables?
What is the meaning of option 'by' in TikZ Intersections
What's the best tool for cutting holes into duct work?
Did Amazon pay $0 in taxes last year?
Should I use HTTPS on a domain that will only be used for redirection?
Called into a meeting and told we are being made redundant (laid off) and "not to share outside". Can I tell my partner?
Practical reasons to have both a large police force and bounty hunting network?
What is Tony Stark injecting into himself in Iron Man 3?
When to use the term transposed instead of modulation?
How can I be pwned if I'm not registered on the compromised site?
Does the US political system, in principle, allow for a no-party system?
Why doesn't "adolescent" take any articles in "listen to adolescent agonising"?
Can you run a ground wire from stove directly to ground pole in the ground
Convert an array of objects to array of the objects' values
How do we objectively assess if a dialogue sounds unnatural or cringy?
Dukha vs legitimate need
Show that $19^{31}>13^{33}$
If $displaystyle x= frac{e^{3z}}{y^4}$ then $z(x,y)$?Algebra and exponentsI'm stuck with this summation problemshow a function remains positive for a given domain$b>a>0$ , how to prove that $Big(dfrac {sqrt a +sqrt b}{2}Big )^2 < dfrac 1e Big(dfrac {b^b} {a^a}Big)^{dfrac 1{b-a}}$?Simplify $(frac{x+5}{x^2-81} + frac{x+7}{x^2-18x+81}):(frac{x+3}{x-9})^2 + frac{7+x}{9+x}$Which one is bigger? Logarithms and trigonometric functionsFinding $ lim_{xrightarrow 0}frac{(1+x)^{frac{1}{x}}-e+frac{ex}{2}}{x^2}$ without using series expansion.maximum value of expression $(sqrt{-3+4x-x^2}+4)^2+(x-5)^2$Coefficient of $x^{n-3}$ in $prod^{n}_{k=1}(x-k)$
$begingroup$
How can i prove that $19^{31}>13^{33}$?
What I tried
$$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$
How do I show it. Help me please.
algebra-precalculus exponential-function number-comparison
$endgroup$
add a comment |
$begingroup$
How can i prove that $19^{31}>13^{33}$?
What I tried
$$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$
How do I show it. Help me please.
algebra-precalculus exponential-function number-comparison
$endgroup$
add a comment |
$begingroup$
How can i prove that $19^{31}>13^{33}$?
What I tried
$$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$
How do I show it. Help me please.
algebra-precalculus exponential-function number-comparison
$endgroup$
How can i prove that $19^{31}>13^{33}$?
What I tried
$$bigg(frac{19}{13}bigg)^2=frac{361}{169}>2>1$$
then $19^{2}>13^{2}$ and $displaystyle 19^{30}>13^{30}$
How do I show it. Help me please.
algebra-precalculus exponential-function number-comparison
algebra-precalculus exponential-function number-comparison
edited 11 hours ago
Michael Rozenberg
107k1894198
107k1894198
asked 15 hours ago
jackyjacky
960615
960615
add a comment |
add a comment |
7 Answers
7
active
oldest
votes
$begingroup$
Note that by the binomial theorem
$$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
which implies that $19^{31}>13^{33}$.
Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?
$endgroup$
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
add a comment |
$begingroup$
$$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$
$$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$
Clearly $$2^{15}geq 13cdot 9implies A>B$$
$endgroup$
add a comment |
$begingroup$
Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
$x ln(19) > (x+2) ln(13)$
and finally
$ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.
$endgroup$
add a comment |
$begingroup$
By your work
$$frac{19^2}{13^2}>2,$$ which says
$$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!
By this way we can prove that
$$19^{31}>13^{35}.$$
$endgroup$
add a comment |
$begingroup$
$19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$
$6859gt 3times 2197$
$6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$
$27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$
$endgroup$
add a comment |
$begingroup$
Well, using what you've got so far:
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.
$19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.
=====
For what it's worth one way I might do it if it were up to me is to note.
$19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.
So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.
$endgroup$
add a comment |
$begingroup$
$left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3138786%2fshow-that-19311333%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that by the binomial theorem
$$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
which implies that $19^{31}>13^{33}$.
Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?
$endgroup$
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
add a comment |
$begingroup$
Note that by the binomial theorem
$$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
which implies that $19^{31}>13^{33}$.
Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?
$endgroup$
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
add a comment |
$begingroup$
Note that by the binomial theorem
$$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
which implies that $19^{31}>13^{33}$.
Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?
$endgroup$
Note that by the binomial theorem
$$left(frac{19}{13}right)^{31}=left(1+frac{6}{13}right)^{31}>binom{31}{3}frac{6^3}{13^3}=frac{31cdot 30cdot 29cdot 36}{13^3}>frac{26^4}{13^3}=16cdot 13>13^2$$
which implies that $19^{31}>13^{33}$.
Bonus question. By using a similar approach we can show the stronger inequality $19^{31}>13^{34}$. Would you like to try it?
edited 14 hours ago
answered 15 hours ago
Robert ZRobert Z
99.8k1068140
99.8k1068140
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
add a comment |
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
$begingroup$
Solved bonus below(before seeing it posted).
$endgroup$
– miniparser
14 hours ago
add a comment |
$begingroup$
$$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$
$$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$
Clearly $$2^{15}geq 13cdot 9implies A>B$$
$endgroup$
add a comment |
$begingroup$
$$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$
$$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$
Clearly $$2^{15}geq 13cdot 9implies A>B$$
$endgroup$
add a comment |
$begingroup$
$$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$
$$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$
Clearly $$2^{15}geq 13cdot 9implies A>B$$
$endgroup$
$$A=19^{31}geq 19^{16}cdot18^{15} = color{red}{19^{16}cdot 9^{15}} cdot 2^{15}$$
$$B=13^{33} = 13cdot 169^{16}leq 13cdot 171^{16} = 13 cdot color{red}{19^{16}cdot 9^{15}}cdot 9$$
Clearly $$2^{15}geq 13cdot 9implies A>B$$
answered 15 hours ago
greedoidgreedoid
46.1k1160117
46.1k1160117
add a comment |
add a comment |
$begingroup$
Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
$x ln(19) > (x+2) ln(13)$
and finally
$ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.
$endgroup$
add a comment |
$begingroup$
Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
$x ln(19) > (x+2) ln(13)$
and finally
$ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.
$endgroup$
add a comment |
$begingroup$
Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
$x ln(19) > (x+2) ln(13)$
and finally
$ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.
$endgroup$
Just compute the minimum $x$ such that $19^x > 13^{x+2}$. By taking logarithm on both sides, we have
$x ln(19) > (x+2) ln(13)$
and finally
$ x > 2 frac{ln(13)}{ln(frac{19}{13})}$ and the number on the right is smaller than 13 so way smaller than the case $x = 31$.
answered 15 hours ago
Gâteau-GalloisGâteau-Gallois
410213
410213
add a comment |
add a comment |
$begingroup$
By your work
$$frac{19^2}{13^2}>2,$$ which says
$$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!
By this way we can prove that
$$19^{31}>13^{35}.$$
$endgroup$
add a comment |
$begingroup$
By your work
$$frac{19^2}{13^2}>2,$$ which says
$$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!
By this way we can prove that
$$19^{31}>13^{35}.$$
$endgroup$
add a comment |
$begingroup$
By your work
$$frac{19^2}{13^2}>2,$$ which says
$$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!
By this way we can prove that
$$19^{31}>13^{35}.$$
$endgroup$
By your work
$$frac{19^2}{13^2}>2,$$ which says
$$left(frac{19}{13}right)^{31}>2^{15.5}>2^8=256>13^2$$ and we are done!
By this way we can prove that
$$19^{31}>13^{35}.$$
edited 11 hours ago
answered 11 hours ago
Michael RozenbergMichael Rozenberg
107k1894198
107k1894198
add a comment |
add a comment |
$begingroup$
$19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$
$6859gt 3times 2197$
$6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$
$27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$
$endgroup$
add a comment |
$begingroup$
$19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$
$6859gt 3times 2197$
$6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$
$27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$
$endgroup$
add a comment |
$begingroup$
$19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$
$6859gt 3times 2197$
$6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$
$27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$
$endgroup$
$19^{30}=(19^3)^{10}=6859^{10}gt 13^{30}=(13^3)^{10}=2197^{10}$
$6859gt 3times 2197$
$6859^{10}gt (3times 2197)^{10}=3^{10}times 2197^{10}=3^3times 3^3times 3^3times 3times 2197^{10}=27^3times 3times 2197^{10}$
$27^3times 3times 2197^{10}gt 13^3times 2197^{10}$ already without even multiplying by $19.$
answered 14 hours ago
miniparserminiparser
7871616
7871616
add a comment |
add a comment |
$begingroup$
Well, using what you've got so far:
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.
$19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.
=====
For what it's worth one way I might do it if it were up to me is to note.
$19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.
So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.
$endgroup$
add a comment |
$begingroup$
Well, using what you've got so far:
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.
$19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.
=====
For what it's worth one way I might do it if it were up to me is to note.
$19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.
So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.
$endgroup$
add a comment |
$begingroup$
Well, using what you've got so far:
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.
$19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.
=====
For what it's worth one way I might do it if it were up to me is to note.
$19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.
So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.
$endgroup$
Well, using what you've got so far:
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{30} > 2^{15}$ so $19^{30} > 2^{15}*13^{30}$.
$19^{31} = 19^{30} *19 > 13^{30}*(19*2^{15}) {? over >} 13^{30}*13^3 = 13^{33}$. If we can show $19*(2^{15}) > 13^3$ we will be done.
=====
For what it's worth one way I might do it if it were up to me is to note.
$19 > 13$ so $19^k > 13^k$ For $19^k > 13^{k+2} = 13^k *13^2$ we need $(frac {19}{13})^k > 169$.
$(frac {19}{13})^2 > 2$ so $(frac {19}{13})^{16} > 2^8 = 256> 169$.
So $19^{16} > 13^{18}$ and $19^{31} > 13^{33}$.... by a lot.
edited 10 hours ago
answered 10 hours ago
fleabloodfleablood
71.9k22687
71.9k22687
add a comment |
add a comment |
$begingroup$
$left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$
$endgroup$
add a comment |
$begingroup$
$left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$
$endgroup$
add a comment |
$begingroup$
$left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$
$endgroup$
$left[dfrac{19}{13}right]^{large 4}!!!=!left[1!+!dfrac{6}{13}right]^{large 4}!!>1!+!4left[dfrac{6}{13}right]!>2,overset{( ,)^{LARGE 8}}Longrightarrow, left[dfrac{19}{13}right]^{large 32}!!!>2^{large 8} > 19cdot 13$
answered 7 hours ago
Bill DubuqueBill Dubuque
212k29195650
212k29195650
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3138786%2fshow-that-19311333%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown