Closed form representation of alternating seriesAlternating seriesConvergence of alternating...
How do we know the LHC results are robust?
Is there any reason not to eat food that's been dropped on the surface of the moon?
Should my PhD thesis be submitted under my legal name?
Implement the Thanos sorting algorithm
How do I keep an essay about "feeling flat" from feeling flat?
Why did Kant, Hegel, and Adorno leave some words and phrases in the Greek alphabet?
Why Were Madagascar and New Zealand Discovered So Late?
How does it work when somebody invests in my business?
Coordinate position not precise
If you attempt to grapple an opponent that you are hidden from, do they roll at disadvantage?
Confused about a passage in Harry Potter y la piedra filosofal
Is the destination of a commercial flight important for the pilot?
(Bedrock Edition) Loading more than six chunks at once
Everything Bob says is false. How does he get people to trust him?
Is there a problem with hiding "forgot password" until it's needed?
Efficiently merge handle parallel feature branches in SFDX
Dot above capital letter not centred
How do I define a right arrow with bar in LaTeX?
What would happen if the UK refused to take part in EU Parliamentary elections?
What's the purpose of "true" in bash "if sudo true; then"
Understanding "audieritis" in Psalm 94
Generic lambda vs generic function give different behaviour
Hostile work environment after whistle-blowing on coworker and our boss. What do I do?
Stereotypical names
Closed form representation of alternating series
Alternating seriesConvergence of alternating seriesClosed-forms of infinite series with factorial in the denominatorHow to evaluate a partially alternating series.Closed form representation of an exponential seriesAlternating series test for complex seriesAlternating series that is bounded by 1 but fails an alternating series testrearrangement of the alternating harmonic seriesWhat is the notation for alternating series with “$cdots$”?Upper bound on alternating harmonic series
$begingroup$
I consider the following series
begin{align}
sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} stackrel{?}{=} 1-ln(2)
end{align}
Wolfram tells me that it is equal to $1-ln(2)$.
I know the following
begin{align}
&sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = ln(2)\
&sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} = sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}
end{align}
I thus need to show that the following is true, but I would not know how to do it.
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = 1
end{align}
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I consider the following series
begin{align}
sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} stackrel{?}{=} 1-ln(2)
end{align}
Wolfram tells me that it is equal to $1-ln(2)$.
I know the following
begin{align}
&sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = ln(2)\
&sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} = sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}
end{align}
I thus need to show that the following is true, but I would not know how to do it.
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = 1
end{align}
sequences-and-series
$endgroup$
$begingroup$
if you put both series into one and start computing the first terms, you will notice that something nice is happening
$endgroup$
– J.F
Mar 15 at 10:07
add a comment |
$begingroup$
I consider the following series
begin{align}
sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} stackrel{?}{=} 1-ln(2)
end{align}
Wolfram tells me that it is equal to $1-ln(2)$.
I know the following
begin{align}
&sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = ln(2)\
&sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} = sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}
end{align}
I thus need to show that the following is true, but I would not know how to do it.
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = 1
end{align}
sequences-and-series
$endgroup$
I consider the following series
begin{align}
sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} stackrel{?}{=} 1-ln(2)
end{align}
Wolfram tells me that it is equal to $1-ln(2)$.
I know the following
begin{align}
&sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = ln(2)\
&sum_{n=0}^infty{frac{(-1)^{n+2}}{n+2}} = sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}
end{align}
I thus need to show that the following is true, but I would not know how to do it.
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}} = 1
end{align}
sequences-and-series
sequences-and-series
asked Mar 15 at 10:05
cluelessclueless
307111
307111
$begingroup$
if you put both series into one and start computing the first terms, you will notice that something nice is happening
$endgroup$
– J.F
Mar 15 at 10:07
add a comment |
$begingroup$
if you put both series into one and start computing the first terms, you will notice that something nice is happening
$endgroup$
– J.F
Mar 15 at 10:07
$begingroup$
if you put both series into one and start computing the first terms, you will notice that something nice is happening
$endgroup$
– J.F
Mar 15 at 10:07
$begingroup$
if you put both series into one and start computing the first terms, you will notice that something nice is happening
$endgroup$
– J.F
Mar 15 at 10:07
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$sum_{n=0}^{infty}dfrac{(-1)^{n+2}}{n+2}=$
$sum_{k=2}^{infty}dfrac{(-1)^k}{k} -1+1=$
$sum_{k=1}^{infty}dfrac{(-1)^k}{k} +1=$
$1+ (-1)sum_{k=1}^{infty}dfrac{(-1)^{k+1}}{k}=$
$1- log 2.$
$endgroup$
add a comment |
$begingroup$
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}
&=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=0}^infty{frac{(-1)^{k}}{k+1}}
\ &=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k}}{k+1}}+1
\ &=1
end{align}
$endgroup$
add a comment |
$begingroup$
$sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}=frac 1 2-frac 1 3+frac 1 4+cdots$ and $sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}=1-frac 1 2+frac 1 3-frac 1 4+cdots$. What happens when you add these two?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149130%2fclosed-form-representation-of-alternating-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$sum_{n=0}^{infty}dfrac{(-1)^{n+2}}{n+2}=$
$sum_{k=2}^{infty}dfrac{(-1)^k}{k} -1+1=$
$sum_{k=1}^{infty}dfrac{(-1)^k}{k} +1=$
$1+ (-1)sum_{k=1}^{infty}dfrac{(-1)^{k+1}}{k}=$
$1- log 2.$
$endgroup$
add a comment |
$begingroup$
$sum_{n=0}^{infty}dfrac{(-1)^{n+2}}{n+2}=$
$sum_{k=2}^{infty}dfrac{(-1)^k}{k} -1+1=$
$sum_{k=1}^{infty}dfrac{(-1)^k}{k} +1=$
$1+ (-1)sum_{k=1}^{infty}dfrac{(-1)^{k+1}}{k}=$
$1- log 2.$
$endgroup$
add a comment |
$begingroup$
$sum_{n=0}^{infty}dfrac{(-1)^{n+2}}{n+2}=$
$sum_{k=2}^{infty}dfrac{(-1)^k}{k} -1+1=$
$sum_{k=1}^{infty}dfrac{(-1)^k}{k} +1=$
$1+ (-1)sum_{k=1}^{infty}dfrac{(-1)^{k+1}}{k}=$
$1- log 2.$
$endgroup$
$sum_{n=0}^{infty}dfrac{(-1)^{n+2}}{n+2}=$
$sum_{k=2}^{infty}dfrac{(-1)^k}{k} -1+1=$
$sum_{k=1}^{infty}dfrac{(-1)^k}{k} +1=$
$1+ (-1)sum_{k=1}^{infty}dfrac{(-1)^{k+1}}{k}=$
$1- log 2.$
answered Mar 15 at 10:34
Peter SzilasPeter Szilas
11.6k2822
11.6k2822
add a comment |
add a comment |
$begingroup$
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}
&=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=0}^infty{frac{(-1)^{k}}{k+1}}
\ &=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k}}{k+1}}+1
\ &=1
end{align}
$endgroup$
add a comment |
$begingroup$
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}
&=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=0}^infty{frac{(-1)^{k}}{k+1}}
\ &=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k}}{k+1}}+1
\ &=1
end{align}
$endgroup$
add a comment |
$begingroup$
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}
&=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=0}^infty{frac{(-1)^{k}}{k+1}}
\ &=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k}}{k+1}}+1
\ &=1
end{align}
$endgroup$
begin{align}
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}
&=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=0}^infty{frac{(-1)^{k}}{k+1}}
\ &=
sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}} + sum_{k=1}^infty{frac{(-1)^{k}}{k+1}}+1
\ &=1
end{align}
answered Mar 15 at 10:08
ZeroZero
50311
50311
add a comment |
add a comment |
$begingroup$
$sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}=frac 1 2-frac 1 3+frac 1 4+cdots$ and $sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}=1-frac 1 2+frac 1 3-frac 1 4+cdots$. What happens when you add these two?
$endgroup$
add a comment |
$begingroup$
$sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}=frac 1 2-frac 1 3+frac 1 4+cdots$ and $sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}=1-frac 1 2+frac 1 3-frac 1 4+cdots$. What happens when you add these two?
$endgroup$
add a comment |
$begingroup$
$sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}=frac 1 2-frac 1 3+frac 1 4+cdots$ and $sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}=1-frac 1 2+frac 1 3-frac 1 4+cdots$. What happens when you add these two?
$endgroup$
$sum_{k=1}^infty{frac{(-1)^{k+1}}{k+1}}=frac 1 2-frac 1 3+frac 1 4+cdots$ and $sum_{k=1}^infty{frac{(-1)^{k+1}}{k}}=1-frac 1 2+frac 1 3-frac 1 4+cdots$. What happens when you add these two?
answered Mar 15 at 10:13
Kavi Rama MurthyKavi Rama Murthy
70.2k53170
70.2k53170
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3149130%2fclosed-form-representation-of-alternating-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
if you put both series into one and start computing the first terms, you will notice that something nice is happening
$endgroup$
– J.F
Mar 15 at 10:07