Non-Borel set in arbitrary metric spaceDerived Sets in arbitrary metric space$A subseteq (X,d)$ is compact....

Fencing style for blades that can attack from a distance

Which models of the Boeing 737 are still in production?

How does one intimidate enemies without having the capacity for violence?

Writing rule stating superpower from different root cause is bad writing

Can divisibility rules for digits be generalized to sum of digits

Why was the small council so happy for Tyrion to become the Master of Coin?

Modeling an IPv4 Address

How to test if a transaction is standard without spending real money?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

"You are your self first supporter", a more proper way to say it

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Do I have a twin with permutated remainders?

What's the output of a record cartridge playing an out-of-speed record

Problem of parity - Can we draw a closed path made up of 20 line segments...

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Why do I get two different answers for this counting problem?

What defenses are there against being summoned by the Gate spell?

The use of multiple foreign keys on same column in SQL Server

Why don't electron-positron collisions release infinite energy?

How to say job offer in Mandarin/Cantonese?

Is it possible to do 50 km distance without any previous training?

What do you call a Matrix-like slowdown and camera movement effect?

To string or not to string

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)



Non-Borel set in arbitrary metric space


Derived Sets in arbitrary metric space$A subseteq (X,d)$ is compact. Which metric $p$ makes $(A times A,p)$ also compact and $d: (A times A,p) rightarrow [0,infty)$ continuous?Borel sets and measurabilityapproximate a Borel set by a continuousAn example of Lebesgue measurable set but not Borel measurable besides the “subset of Cantor set” example.A Borel subset of a topological spaceseparability of a metric spacetotally disconnected and non Borel set.What do metric spaces look like?How do we get the notion “Borel regular” measures?













6












$begingroup$


Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










share|cite|improve this question









$endgroup$

















    6












    $begingroup$


    Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










    share|cite|improve this question









    $endgroup$















      6












      6








      6


      1



      $begingroup$


      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.










      share|cite|improve this question









      $endgroup$




      Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.







      real-analysis general-topology functional-analysis measure-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 19 at 23:34









      Daniel LiDaniel Li

      787414




      787414






















          2 Answers
          2






          active

          oldest

          votes


















          11












          $begingroup$

          Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



          This result can be found in:
          Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



          In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
          $$
          d(x,y)=1, quad d(x,x)=d(y,y)=0.
          $$

          The Borel sigma algebra on this metric space is given by
          $$
          {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
          $$

          where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            Mar 20 at 4:18





















          10












          $begingroup$

          Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



          In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            11












            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              Mar 20 at 4:18


















            11












            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              Mar 20 at 4:18
















            11












            11








            11





            $begingroup$

            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.






            share|cite|improve this answer











            $endgroup$



            Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.



            This result can be found in:
            Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.



            In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
            $$
            d(x,y)=1, quad d(x,x)=d(y,y)=0.
            $$

            The Borel sigma algebra on this metric space is given by
            $$
            {{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
            $$

            where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Mar 20 at 0:27

























            answered Mar 20 at 0:16









            MartinMartin

            1,1881019




            1,1881019












            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              Mar 20 at 4:18




















            • $begingroup$
              +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
              $endgroup$
              – DanielWainfleet
              Mar 20 at 4:18


















            $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            Mar 20 at 4:18






            $begingroup$
            +1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
            $endgroup$
            – DanielWainfleet
            Mar 20 at 4:18













            10












            $begingroup$

            Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



            In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






            share|cite|improve this answer









            $endgroup$


















              10












              $begingroup$

              Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



              In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






              share|cite|improve this answer









              $endgroup$
















                10












                10








                10





                $begingroup$

                Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.






                share|cite|improve this answer









                $endgroup$



                Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:



                In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Mar 20 at 1:12









                Noah SchweberNoah Schweber

                128k10152294




                128k10152294






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Nidaros erkebispedøme

                    Birsay

                    Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...