Non-Borel set in arbitrary metric spaceDerived Sets in arbitrary metric space$A subseteq (X,d)$ is compact....
Fencing style for blades that can attack from a distance
Which models of the Boeing 737 are still in production?
How does one intimidate enemies without having the capacity for violence?
Writing rule stating superpower from different root cause is bad writing
Can divisibility rules for digits be generalized to sum of digits
Why was the small council so happy for Tyrion to become the Master of Coin?
Modeling an IPv4 Address
How to test if a transaction is standard without spending real money?
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
"You are your self first supporter", a more proper way to say it
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
Do I have a twin with permutated remainders?
What's the output of a record cartridge playing an out-of-speed record
Problem of parity - Can we draw a closed path made up of 20 line segments...
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
Why do I get two different answers for this counting problem?
What defenses are there against being summoned by the Gate spell?
The use of multiple foreign keys on same column in SQL Server
Why don't electron-positron collisions release infinite energy?
How to say job offer in Mandarin/Cantonese?
Is it possible to do 50 km distance without any previous training?
What do you call a Matrix-like slowdown and camera movement effect?
To string or not to string
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Non-Borel set in arbitrary metric space
Derived Sets in arbitrary metric space$A subseteq (X,d)$ is compact. Which metric $p$ makes $(A times A,p)$ also compact and $d: (A times A,p) rightarrow [0,infty)$ continuous?Borel sets and measurabilityapproximate a Borel set by a continuousAn example of Lebesgue measurable set but not Borel measurable besides the “subset of Cantor set” example.A Borel subset of a topological spaceseparability of a metric spacetotally disconnected and non Borel set.What do metric spaces look like?How do we get the notion “Borel regular” measures?
$begingroup$
Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.
real-analysis general-topology functional-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.
real-analysis general-topology functional-analysis measure-theory
$endgroup$
add a comment |
$begingroup$
Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.
real-analysis general-topology functional-analysis measure-theory
$endgroup$
Most sources give non-Borel set in Euclidean space. I wonder if there is a way to construct such sets in arbitrary metric space. In particular, is there a non-borel set in $C[0,1]$ all continuous functions on $[0,1]$ where metrics is supremum.
real-analysis general-topology functional-analysis measure-theory
real-analysis general-topology functional-analysis measure-theory
asked Mar 19 at 23:34
Daniel LiDaniel Li
787414
787414
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.
This result can be found in:
Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.
In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
$$
d(x,y)=1, quad d(x,x)=d(y,y)=0.
$$
The Borel sigma algebra on this metric space is given by
$$
{{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
$$
where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.
$endgroup$
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
add a comment |
$begingroup$
Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:
In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.
This result can be found in:
Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.
In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
$$
d(x,y)=1, quad d(x,x)=d(y,y)=0.
$$
The Borel sigma algebra on this metric space is given by
$$
{{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
$$
where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.
$endgroup$
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
add a comment |
$begingroup$
Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.
This result can be found in:
Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.
In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
$$
d(x,y)=1, quad d(x,x)=d(y,y)=0.
$$
The Borel sigma algebra on this metric space is given by
$$
{{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
$$
where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.
$endgroup$
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
add a comment |
$begingroup$
Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.
This result can be found in:
Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.
In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
$$
d(x,y)=1, quad d(x,x)=d(y,y)=0.
$$
The Borel sigma algebra on this metric space is given by
$$
{{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
$$
where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.
$endgroup$
Yes, there is indeed examples of non-Borel sets in $C[0,1]$ of all continuous functions from $[0,1]$ to $mathbb{R}$ equipped with the uniform norm. Namely, the subset of all continuous nowhere differentiable functions is not a Borel set.
This result can be found in:
Mauldin, R. Daniel. The set of continuous nowhere differentiable functions. Pacific J. Math. 83 (1979), no. 1, 199--205.
In regards to the question on whether it is possible to construct non-Borel sets in arbitrary metric spaces, then the answer is no. Consider the metric space $({x,y},d)$ equipped with the discrete metric $d:{x,y}times {x,y} to {0,1}$ given by
$$
d(x,y)=1, quad d(x,x)=d(y,y)=0.
$$
The Borel sigma algebra on this metric space is given by
$$
{{x},{y},{x,y},emptyset} = mathcal{P}({x,y})
$$
where $mathcal{P}({x,y})$ is the powerset of ${x,y}$, so all subsets are Borel measurable sets.
edited Mar 20 at 0:27
answered Mar 20 at 0:16
MartinMartin
1,1881019
1,1881019
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
add a comment |
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
$begingroup$
+1.... With the discrete metric on any set, all subsets are open, and a fortiori, are Borel. Another example would be any countable metric space $X,$ as any $Ysubset X$ is equal to $ cup {{y}:yin Y},$ which is a countable union of closed sets
$endgroup$
– DanielWainfleet
Mar 20 at 4:18
add a comment |
$begingroup$
Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:
In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.
$endgroup$
add a comment |
$begingroup$
Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:
In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.
$endgroup$
add a comment |
$begingroup$
Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:
In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.
$endgroup$
Martin gave a specific example in $C[0,1]$ and showed that the general example is negative. Let me argue that a broad class of spaces has a positive answer:
In any second-countable topological space, there are only continuum-many Borel sets. Since space with at least continuum many points has more than continuum many subsets, this means that every second-countable space with continuum many points has non-Borel subsets.
answered Mar 20 at 1:12
Noah SchweberNoah Schweber
128k10152294
128k10152294
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3154781%2fnon-borel-set-in-arbitrary-metric-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown