$a,b,c>0$ and $abc=1$; prove $sum_{cyc}frac1{(b+1)^2}+frac1{a+b+c+1}ge1$ [duplicate] The...
Proper way to express "He disappeared them"
Grabbing quick drinks
Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?
How to count occurrences of text in a file?
Is the D&D universe the same as the Forgotten Realms universe?
What did we know about the Kessel run before the prequels?
Why isn't acceleration always zero whenever velocity is zero, such as the moment a ball bounces off a wall?
How to write a definition with variants?
Is French Guiana a (hard) EU border?
Do I need to write [sic] when a number is less than 10 but isn't written out?
Can you be charged for obstruction for refusing to answer questions?
Why don't programming languages automatically manage the synchronous/asynchronous problem?
Axiom Schema vs Axiom
Is it ever safe to open a suspicious HTML file (e.g. email attachment)?
The exact meaning of 'Mom made me a sandwich'
What connection does MS Office have to Netscape Navigator?
Math-accent symbol over parentheses enclosing accented symbol (amsmath)
Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?
Why didn't Khan get resurrected in the Genesis Explosion?
What steps are necessary to read a Modern SSD in Medieval Europe?
How to prove a simple equation?
0 rank tensor vs 1D vector
Why does standard notation not preserve intervals (visually)
The past simple of "gaslight" – "gaslighted" or "gaslit"?
$a,b,c>0$ and $abc=1$; prove $sum_{cyc}frac1{(b+1)^2}+frac1{a+b+c+1}ge1$ [duplicate]
The Next CEO of Stack OverflowProve $Σ_{cyc}frac{1}{left(a+1right)^2}+frac{1}{a+b+c+1}ge 1$Prove that $sumlimits_{cyc}frac{a}{b(3+a-b)}ge 1$For what values of $k>0$ does $abc=1 implies sum_{mbox{cyc}}left(frac1{a+k}-frac{a}{a^2+k}right) geq 0$?show $sum_{cyc}(1-x)^2ge sum_{cyc}frac{z^2(1-x^2)(1-y^2)}{(xy+z)^2}.$prove $sum_{cyc}frac{1}{a(a+b)}gefrac{4}{ac+bd}$Inequality $sum_{cyc} sqrt{frac{a}{a+8}} geq 1$prove this inequality $Σ_{cyc}frac{a^3+abc}{b^2+c^2}ge a+b+c$For $abc=1$ prove that $sumlimits_{cyc}frac{a}{a^{11}+1}leqfrac{3}{2}.$prove this inequality by $abc=1$If $ab+bc+ca=3$ for non-negative $a$, $b$, $c$, show that $sum_{cyc}a^2b^2+sum_{cyc}frac{12a^2b^2c^2}{(a+b)^2}ge 12abc$Prove the inequality $sum_{cyc} {{a+abc} over {1+ab+abcd}} ge {{10} over {3}}$ with Cauchy-Schwarz
$begingroup$
This question already has an answer here:
Prove $Σ_{cyc}frac{1}{left(a+1right)^2}+frac{1}{a+b+c+1}ge 1$
1 answer
Let $a$, $b$ and $c$ be three positives such that $abc=1$. Prove that $$sum_{cyc}frac1{(b+1)^2}+frac1{a+b+c+1}ge1$$
Here's what have I done that is completely incorrect. Let $a + b + c + 1 = x$. We have that
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} ge displaystyle sum_{cyc}dfrac{1}{(c + 1)(a + 1)} = sum_{cyc}dfrac{1}{x - b + ca}$$
That means
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} + dfrac{1}{a + b + c + 1} ge dfrac{16}{bc + ca + ab + 3x + 1}$$
$$ge dfrac{48}{(x - 1)^2 + 9x + 3} = dfrac{48}{x^2 + 7x + 4}$$
That was illogical.
algebra-precalculus inequality substitution
$endgroup$
marked as duplicate by Carl Mummert, Michael Rozenberg
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Mar 17 at 12:06
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Prove $Σ_{cyc}frac{1}{left(a+1right)^2}+frac{1}{a+b+c+1}ge 1$
1 answer
Let $a$, $b$ and $c$ be three positives such that $abc=1$. Prove that $$sum_{cyc}frac1{(b+1)^2}+frac1{a+b+c+1}ge1$$
Here's what have I done that is completely incorrect. Let $a + b + c + 1 = x$. We have that
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} ge displaystyle sum_{cyc}dfrac{1}{(c + 1)(a + 1)} = sum_{cyc}dfrac{1}{x - b + ca}$$
That means
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} + dfrac{1}{a + b + c + 1} ge dfrac{16}{bc + ca + ab + 3x + 1}$$
$$ge dfrac{48}{(x - 1)^2 + 9x + 3} = dfrac{48}{x^2 + 7x + 4}$$
That was illogical.
algebra-precalculus inequality substitution
$endgroup$
marked as duplicate by Carl Mummert, Michael Rozenberg
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Mar 17 at 12:06
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Title is very odd.
$endgroup$
– Love Invariants
Mar 16 at 17:33
add a comment |
$begingroup$
This question already has an answer here:
Prove $Σ_{cyc}frac{1}{left(a+1right)^2}+frac{1}{a+b+c+1}ge 1$
1 answer
Let $a$, $b$ and $c$ be three positives such that $abc=1$. Prove that $$sum_{cyc}frac1{(b+1)^2}+frac1{a+b+c+1}ge1$$
Here's what have I done that is completely incorrect. Let $a + b + c + 1 = x$. We have that
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} ge displaystyle sum_{cyc}dfrac{1}{(c + 1)(a + 1)} = sum_{cyc}dfrac{1}{x - b + ca}$$
That means
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} + dfrac{1}{a + b + c + 1} ge dfrac{16}{bc + ca + ab + 3x + 1}$$
$$ge dfrac{48}{(x - 1)^2 + 9x + 3} = dfrac{48}{x^2 + 7x + 4}$$
That was illogical.
algebra-precalculus inequality substitution
$endgroup$
This question already has an answer here:
Prove $Σ_{cyc}frac{1}{left(a+1right)^2}+frac{1}{a+b+c+1}ge 1$
1 answer
Let $a$, $b$ and $c$ be three positives such that $abc=1$. Prove that $$sum_{cyc}frac1{(b+1)^2}+frac1{a+b+c+1}ge1$$
Here's what have I done that is completely incorrect. Let $a + b + c + 1 = x$. We have that
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} ge displaystyle sum_{cyc}dfrac{1}{(c + 1)(a + 1)} = sum_{cyc}dfrac{1}{x - b + ca}$$
That means
$$displaystyle sum_{cyc}dfrac{1}{(b + 1)^2} + dfrac{1}{a + b + c + 1} ge dfrac{16}{bc + ca + ab + 3x + 1}$$
$$ge dfrac{48}{(x - 1)^2 + 9x + 3} = dfrac{48}{x^2 + 7x + 4}$$
That was illogical.
This question already has an answer here:
Prove $Σ_{cyc}frac{1}{left(a+1right)^2}+frac{1}{a+b+c+1}ge 1$
1 answer
algebra-precalculus inequality substitution
algebra-precalculus inequality substitution
edited Mar 17 at 5:15
Michael Rozenberg
109k1896201
109k1896201
asked Mar 16 at 17:13
Lê Thành ĐạtLê Thành Đạt
33312
33312
marked as duplicate by Carl Mummert, Michael Rozenberg
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Mar 17 at 12:06
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Carl Mummert, Michael Rozenberg
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Mar 17 at 12:06
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
Title is very odd.
$endgroup$
– Love Invariants
Mar 16 at 17:33
add a comment |
1
$begingroup$
Title is very odd.
$endgroup$
– Love Invariants
Mar 16 at 17:33
1
1
$begingroup$
Title is very odd.
$endgroup$
– Love Invariants
Mar 16 at 17:33
$begingroup$
Title is very odd.
$endgroup$
– Love Invariants
Mar 16 at 17:33
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $a+b+c=3u$, $ab+ac+bc=3v^2,$ where $v>0$, and $abc=w^3$.
Thus, $$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}-1=$$
$$=sum_{cyc}frac{1}{(a+1)^2}+frac{2}{prodlimits_{cyc}(a+1)}-1+frac{1}{a+b+c+1}-frac{2}{prodlimits_{cyc}(a+1)}=$$
$$=frac{a^2+b^2+c^2-3}{prodlimits_{cyc}(a+1)^2}+frac{sumlimits_{cyc}(ab-a)}{(a+b+c+1)prodlimits_{cyc}(a+1)}.$$
Thus, we need to prove that
$$(a^2+b^2+c^2-3)(a+b+c+1)+sum_{cyc}(ab-a)prod_{cyc}(a+1)geq0$$ or
$$3v^4+9u^3w-6uv^2w-5uw^3-w^4geq0,$$ which is true because $ugeq vgeq w$.
$endgroup$
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
add a comment |
$begingroup$
Hint: Substituting $$a=frac{x}{y},b=frac{y}{z}c=frac{z}{x}$$
so we get
$${x}^{6}{z}^{3}+{x}^{5}{y}^{3}z+{x}^{5}{y}^{2}{z}^{2}+{x}^{4}{y}^{4}z-3
,{x}^{4}{y}^{2}{z}^{3}+{x}^{4}y{z}^{4}+{x}^{3}{y}^{6}-3,{x}^{3}{y}^{
4}{z}^{2}-3,{x}^{3}{y}^{3}{z}^{3}+{x}^{3}y{z}^{5}+{x}^{2}{y}^{5}{z}^{
2}-3,{x}^{2}{y}^{3}{z}^{4}+{x}^{2}{y}^{2}{z}^{5}+x{y}^{5}{z}^{3}+x{y}
^{4}{z}^{4}+{y}^{3}{z}^{6}
geq 0$$
This is true by AM-GM.
$endgroup$
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
add a comment |
$begingroup$
Another solution.
Since $$prod_{cyc}(a-1)^2=prod_{cyc}((a-1)(b-1))geq0,$$ we can assume that $(a-1)(b-1)geq0,$ which gives
$$a+bleq ab+1=frac{1}{c}+1.$$
Also, we have $$frac{1}{(a+1)^2}+frac{1}{(b+1)^2}-frac{1}{ab+1}=frac{ab(a-b)^2+(ab-1)^2}{(a+1)^2(b+1)^2}geq0$$
Id est,
$$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}geqfrac{1}{ab+1}+frac{1}{(c+1)^2}+frac{1}{ab+1+c+1}=$$
$$=frac{1}{frac{1}{c}+1}+frac{1}{(c+1)^2}+frac{1}{frac{1}{c}+1+c+1}=frac{c}{c+1}+frac{1}{(c+1)^2}+frac{c}{(c+1)^2}=1.$$
$endgroup$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $a+b+c=3u$, $ab+ac+bc=3v^2,$ where $v>0$, and $abc=w^3$.
Thus, $$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}-1=$$
$$=sum_{cyc}frac{1}{(a+1)^2}+frac{2}{prodlimits_{cyc}(a+1)}-1+frac{1}{a+b+c+1}-frac{2}{prodlimits_{cyc}(a+1)}=$$
$$=frac{a^2+b^2+c^2-3}{prodlimits_{cyc}(a+1)^2}+frac{sumlimits_{cyc}(ab-a)}{(a+b+c+1)prodlimits_{cyc}(a+1)}.$$
Thus, we need to prove that
$$(a^2+b^2+c^2-3)(a+b+c+1)+sum_{cyc}(ab-a)prod_{cyc}(a+1)geq0$$ or
$$3v^4+9u^3w-6uv^2w-5uw^3-w^4geq0,$$ which is true because $ugeq vgeq w$.
$endgroup$
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
add a comment |
$begingroup$
Let $a+b+c=3u$, $ab+ac+bc=3v^2,$ where $v>0$, and $abc=w^3$.
Thus, $$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}-1=$$
$$=sum_{cyc}frac{1}{(a+1)^2}+frac{2}{prodlimits_{cyc}(a+1)}-1+frac{1}{a+b+c+1}-frac{2}{prodlimits_{cyc}(a+1)}=$$
$$=frac{a^2+b^2+c^2-3}{prodlimits_{cyc}(a+1)^2}+frac{sumlimits_{cyc}(ab-a)}{(a+b+c+1)prodlimits_{cyc}(a+1)}.$$
Thus, we need to prove that
$$(a^2+b^2+c^2-3)(a+b+c+1)+sum_{cyc}(ab-a)prod_{cyc}(a+1)geq0$$ or
$$3v^4+9u^3w-6uv^2w-5uw^3-w^4geq0,$$ which is true because $ugeq vgeq w$.
$endgroup$
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
add a comment |
$begingroup$
Let $a+b+c=3u$, $ab+ac+bc=3v^2,$ where $v>0$, and $abc=w^3$.
Thus, $$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}-1=$$
$$=sum_{cyc}frac{1}{(a+1)^2}+frac{2}{prodlimits_{cyc}(a+1)}-1+frac{1}{a+b+c+1}-frac{2}{prodlimits_{cyc}(a+1)}=$$
$$=frac{a^2+b^2+c^2-3}{prodlimits_{cyc}(a+1)^2}+frac{sumlimits_{cyc}(ab-a)}{(a+b+c+1)prodlimits_{cyc}(a+1)}.$$
Thus, we need to prove that
$$(a^2+b^2+c^2-3)(a+b+c+1)+sum_{cyc}(ab-a)prod_{cyc}(a+1)geq0$$ or
$$3v^4+9u^3w-6uv^2w-5uw^3-w^4geq0,$$ which is true because $ugeq vgeq w$.
$endgroup$
Let $a+b+c=3u$, $ab+ac+bc=3v^2,$ where $v>0$, and $abc=w^3$.
Thus, $$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}-1=$$
$$=sum_{cyc}frac{1}{(a+1)^2}+frac{2}{prodlimits_{cyc}(a+1)}-1+frac{1}{a+b+c+1}-frac{2}{prodlimits_{cyc}(a+1)}=$$
$$=frac{a^2+b^2+c^2-3}{prodlimits_{cyc}(a+1)^2}+frac{sumlimits_{cyc}(ab-a)}{(a+b+c+1)prodlimits_{cyc}(a+1)}.$$
Thus, we need to prove that
$$(a^2+b^2+c^2-3)(a+b+c+1)+sum_{cyc}(ab-a)prod_{cyc}(a+1)geq0$$ or
$$3v^4+9u^3w-6uv^2w-5uw^3-w^4geq0,$$ which is true because $ugeq vgeq w$.
answered Mar 16 at 18:17
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
add a comment |
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
Could you fix your answer if possible because the given condition is already $abc = 1$. There's no need to let $abc = w^3$.
$endgroup$
– Lê Thành Đạt
Mar 17 at 0:44
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
@Lê Thành Đạt Just $w=1$, which gives a homogenization. See please better my solution.
$endgroup$
– Michael Rozenberg
Mar 17 at 2:15
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
Is there a way to prove the inequation without using the $uvw$'s method and by using classic inequalities?
$endgroup$
– Lê Thành Đạt
Mar 17 at 2:58
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
@Lê Thành Đạt There is a very nice proof. But it's not mine.
$endgroup$
– Michael Rozenberg
Mar 17 at 4:15
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
$begingroup$
Please post the proof if it is not the other answer.
$endgroup$
– Lê Thành Đạt
Mar 17 at 4:18
add a comment |
$begingroup$
Hint: Substituting $$a=frac{x}{y},b=frac{y}{z}c=frac{z}{x}$$
so we get
$${x}^{6}{z}^{3}+{x}^{5}{y}^{3}z+{x}^{5}{y}^{2}{z}^{2}+{x}^{4}{y}^{4}z-3
,{x}^{4}{y}^{2}{z}^{3}+{x}^{4}y{z}^{4}+{x}^{3}{y}^{6}-3,{x}^{3}{y}^{
4}{z}^{2}-3,{x}^{3}{y}^{3}{z}^{3}+{x}^{3}y{z}^{5}+{x}^{2}{y}^{5}{z}^{
2}-3,{x}^{2}{y}^{3}{z}^{4}+{x}^{2}{y}^{2}{z}^{5}+x{y}^{5}{z}^{3}+x{y}
^{4}{z}^{4}+{y}^{3}{z}^{6}
geq 0$$
This is true by AM-GM.
$endgroup$
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
add a comment |
$begingroup$
Hint: Substituting $$a=frac{x}{y},b=frac{y}{z}c=frac{z}{x}$$
so we get
$${x}^{6}{z}^{3}+{x}^{5}{y}^{3}z+{x}^{5}{y}^{2}{z}^{2}+{x}^{4}{y}^{4}z-3
,{x}^{4}{y}^{2}{z}^{3}+{x}^{4}y{z}^{4}+{x}^{3}{y}^{6}-3,{x}^{3}{y}^{
4}{z}^{2}-3,{x}^{3}{y}^{3}{z}^{3}+{x}^{3}y{z}^{5}+{x}^{2}{y}^{5}{z}^{
2}-3,{x}^{2}{y}^{3}{z}^{4}+{x}^{2}{y}^{2}{z}^{5}+x{y}^{5}{z}^{3}+x{y}
^{4}{z}^{4}+{y}^{3}{z}^{6}
geq 0$$
This is true by AM-GM.
$endgroup$
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
add a comment |
$begingroup$
Hint: Substituting $$a=frac{x}{y},b=frac{y}{z}c=frac{z}{x}$$
so we get
$${x}^{6}{z}^{3}+{x}^{5}{y}^{3}z+{x}^{5}{y}^{2}{z}^{2}+{x}^{4}{y}^{4}z-3
,{x}^{4}{y}^{2}{z}^{3}+{x}^{4}y{z}^{4}+{x}^{3}{y}^{6}-3,{x}^{3}{y}^{
4}{z}^{2}-3,{x}^{3}{y}^{3}{z}^{3}+{x}^{3}y{z}^{5}+{x}^{2}{y}^{5}{z}^{
2}-3,{x}^{2}{y}^{3}{z}^{4}+{x}^{2}{y}^{2}{z}^{5}+x{y}^{5}{z}^{3}+x{y}
^{4}{z}^{4}+{y}^{3}{z}^{6}
geq 0$$
This is true by AM-GM.
$endgroup$
Hint: Substituting $$a=frac{x}{y},b=frac{y}{z}c=frac{z}{x}$$
so we get
$${x}^{6}{z}^{3}+{x}^{5}{y}^{3}z+{x}^{5}{y}^{2}{z}^{2}+{x}^{4}{y}^{4}z-3
,{x}^{4}{y}^{2}{z}^{3}+{x}^{4}y{z}^{4}+{x}^{3}{y}^{6}-3,{x}^{3}{y}^{
4}{z}^{2}-3,{x}^{3}{y}^{3}{z}^{3}+{x}^{3}y{z}^{5}+{x}^{2}{y}^{5}{z}^{
2}-3,{x}^{2}{y}^{3}{z}^{4}+{x}^{2}{y}^{2}{z}^{5}+x{y}^{5}{z}^{3}+x{y}
^{4}{z}^{4}+{y}^{3}{z}^{6}
geq 0$$
This is true by AM-GM.
answered Mar 16 at 17:35
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
78.4k42867
78.4k42867
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
add a comment |
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
WA says the same thing: wolframalpha.com/input/…
$endgroup$
– Michael Rozenberg
Mar 16 at 19:12
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
Should i misreaded the problem?
$endgroup$
– Dr. Sonnhard Graubner
Mar 16 at 19:13
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
$begingroup$
I can't get around proving the inequality with this method. Do you have a different answer?
$endgroup$
– Lê Thành Đạt
Mar 17 at 11:27
add a comment |
$begingroup$
Another solution.
Since $$prod_{cyc}(a-1)^2=prod_{cyc}((a-1)(b-1))geq0,$$ we can assume that $(a-1)(b-1)geq0,$ which gives
$$a+bleq ab+1=frac{1}{c}+1.$$
Also, we have $$frac{1}{(a+1)^2}+frac{1}{(b+1)^2}-frac{1}{ab+1}=frac{ab(a-b)^2+(ab-1)^2}{(a+1)^2(b+1)^2}geq0$$
Id est,
$$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}geqfrac{1}{ab+1}+frac{1}{(c+1)^2}+frac{1}{ab+1+c+1}=$$
$$=frac{1}{frac{1}{c}+1}+frac{1}{(c+1)^2}+frac{1}{frac{1}{c}+1+c+1}=frac{c}{c+1}+frac{1}{(c+1)^2}+frac{c}{(c+1)^2}=1.$$
$endgroup$
add a comment |
$begingroup$
Another solution.
Since $$prod_{cyc}(a-1)^2=prod_{cyc}((a-1)(b-1))geq0,$$ we can assume that $(a-1)(b-1)geq0,$ which gives
$$a+bleq ab+1=frac{1}{c}+1.$$
Also, we have $$frac{1}{(a+1)^2}+frac{1}{(b+1)^2}-frac{1}{ab+1}=frac{ab(a-b)^2+(ab-1)^2}{(a+1)^2(b+1)^2}geq0$$
Id est,
$$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}geqfrac{1}{ab+1}+frac{1}{(c+1)^2}+frac{1}{ab+1+c+1}=$$
$$=frac{1}{frac{1}{c}+1}+frac{1}{(c+1)^2}+frac{1}{frac{1}{c}+1+c+1}=frac{c}{c+1}+frac{1}{(c+1)^2}+frac{c}{(c+1)^2}=1.$$
$endgroup$
add a comment |
$begingroup$
Another solution.
Since $$prod_{cyc}(a-1)^2=prod_{cyc}((a-1)(b-1))geq0,$$ we can assume that $(a-1)(b-1)geq0,$ which gives
$$a+bleq ab+1=frac{1}{c}+1.$$
Also, we have $$frac{1}{(a+1)^2}+frac{1}{(b+1)^2}-frac{1}{ab+1}=frac{ab(a-b)^2+(ab-1)^2}{(a+1)^2(b+1)^2}geq0$$
Id est,
$$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}geqfrac{1}{ab+1}+frac{1}{(c+1)^2}+frac{1}{ab+1+c+1}=$$
$$=frac{1}{frac{1}{c}+1}+frac{1}{(c+1)^2}+frac{1}{frac{1}{c}+1+c+1}=frac{c}{c+1}+frac{1}{(c+1)^2}+frac{c}{(c+1)^2}=1.$$
$endgroup$
Another solution.
Since $$prod_{cyc}(a-1)^2=prod_{cyc}((a-1)(b-1))geq0,$$ we can assume that $(a-1)(b-1)geq0,$ which gives
$$a+bleq ab+1=frac{1}{c}+1.$$
Also, we have $$frac{1}{(a+1)^2}+frac{1}{(b+1)^2}-frac{1}{ab+1}=frac{ab(a-b)^2+(ab-1)^2}{(a+1)^2(b+1)^2}geq0$$
Id est,
$$sum_{cyc}frac{1}{(a+1)^2}+frac{1}{a+b+c+1}geqfrac{1}{ab+1}+frac{1}{(c+1)^2}+frac{1}{ab+1+c+1}=$$
$$=frac{1}{frac{1}{c}+1}+frac{1}{(c+1)^2}+frac{1}{frac{1}{c}+1+c+1}=frac{c}{c+1}+frac{1}{(c+1)^2}+frac{c}{(c+1)^2}=1.$$
answered Mar 17 at 5:03
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
1
$begingroup$
Title is very odd.
$endgroup$
– Love Invariants
Mar 16 at 17:33