Proving by induction of $n$ that $sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}} $...
If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?
Why do early math courses focus on the cross sections of a cone and not on other 3D objects?
In musical terms, what properties are varied by the human voice to produce different words / syllables?
The test team as an enemy of development? And how can this be avoided?
Can two people see the same photon?
Delete free apps from library
Can you force honesty by using the Speak with Dead and Zone of Truth spells together?
How do living politicians protect their readily obtainable signatures from misuse?
Most effective melee weapons for arboreal combat? (pre-gunpowder technology)
What is the difference between a "ranged attack" and a "ranged weapon attack"?
Why not use the yoke to control yaw, as well as pitch and roll?
How does light 'choose' between wave and particle behaviour?
Moving a wrapfig vertically to encroach partially on a subsection title
GDP with Intermediate Production
Why is the change of basis formula counter-intuitive? [See details]
What order were files/directories output in dir?
What does the writing on Poe's helmet say?
Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?
Relating to the President and obstruction, were Mueller's conclusions preordained?
The Nth Gryphon Number
what is the log of the PDF for a Normal Distribution?
How to change the tick of the color bar legend to black
Resize vertical bars (absolute-value symbols)
After Sam didn't return home in the end, were he and Al still friends?
Proving by induction of $n$ that $sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}} $
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^{3}$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_{k=1}^n (k+1)2^{k} = n2^{n+1} $5. Prove by induction on $n$ that $sumlimits_{k=1}^n frac k{k+1} leq n - frac1{n+1}$Prove by induction on n that $sumlimits_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}$Prove by induction on n that $sumlimits_{k=1}^n frac {2^{k}}{k} leq 2^{n}$
$begingroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
$endgroup$
add a comment |
$begingroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
$endgroup$
add a comment |
$begingroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
$endgroup$
$$
sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac{1}{2} - frac1{(n+1)2^{n+1}}
$$
Base Case:
I did $n = 1$, so..
LHS-
$$sum_{k=1}^n frac {k+2}{k(k+1)2^{k+1}} = frac3{8}$$
RHS-
$$frac{1}{2} - frac1{(n+1)2^{n+1}} = frac3{8}$$
so LHS = RHS
Inductive case-
LHS for $n+1$
$$sum_{k=1}^{n+1} frac {k+2}{k(k+1)2^{k+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}$$
and then I think that you can use inductive hypothesis to change it to the form of
$$
frac{1}{2} - frac1{(n+1)2^{n+1}} +frac {n+3}{(n+1)(n+2)2^{n+2}}
$$
and then I broke up $frac {n+3}{(n+1)(n+2)2^{n+2}}$ into
$$frac{2(n+2)-(n+1)}{(n+1)(n+2)2^{n+2}}$$
$$=$$
$$frac{2}{(n+1)2^{n+2}} - frac{1}{(n+2)2^{n+2}}$$
$$=$$
$$frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then put it back in with the rest of the equation, bringing me to
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
then
$$frac{1}2 -frac{2}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}$$
and
$$frac{1}2 -frac{1}{(n+1)2^{n}} - frac{1}{(n+2)2^{n+2}}$$
$$frac{1}2 -frac{(n+2)2^{n+2} - (n+1)2^{n}}{(n+1)(n+2)2^{2n+2}} $$
which I think simplifies down to this after factoring out a $2^{n}$ from the numerator?
$$frac{1}2 -frac{2^{n}((n+2)2^{2} - (n+1))}{(n+1)(n+2)2^{2n+2}} $$
canceling out $2^{n}$
$$frac{1}2 -frac{(3n-7)}{(n+1)(n+2)2^{n+2}} $$
and I'm stuck, please help!
discrete-mathematics induction
discrete-mathematics induction
edited Mar 26 at 6:28
Asaf Karagila♦
309k33441775
309k33441775
asked Mar 26 at 1:04
BrownieBrownie
3467
3467
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-that-sum-k-1n-frac-k2kk12k1-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
add a comment |
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
add a comment |
$begingroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
$endgroup$
Your error is just after the sixth step from the bottom:
$$frac{1}2 -frac {1}{(n+1)2^{n+1}} +frac{1}{(n+1)2^{n+1}} - frac{1}{(n+2)2^{n+2}}=frac{1}2 -frac{1}{(n+2)2^{n+2}}$$
Then you are done.
You accidentally added the two middle terms instead of subtracting.
answered Mar 26 at 1:24
John Wayland BalesJohn Wayland Bales
15.3k21238
15.3k21238
add a comment |
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
$endgroup$
Using a telescoping sum, we get
$$
begin{align}
sum_{k=1}^nfrac{k+2}{k(k+1)2^{k+1}}
&=sum_{k=1}^nleft(frac1{k2^k}-frac1{(k+1)2^{k+1}}right)\
&=sum_{k=1}^nfrac1{k2^k}-sum_{k=2}^{n+1}frac1{k2^k}\
&=frac12-frac1{(n+1)2^{n+1}}
end{align}
$$
answered Mar 26 at 2:17
robjohn♦robjohn
271k27316643
271k27316643
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-that-sum-k-1n-frac-k2kk12k1-fra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown