Proof by mathematical induction with the problem $40(2n)! ≥ 30^n$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Proof by Induction (concerning $3^nge1+2n$)Mathematical Induction with InequalitiesProve by using Mathematical induction (sum of the first $n$ odd numbers is $n^2$)Stuck in Induction Inequality: $2^n>3n^2$prove inequality by induction — Discrete mathProve by induction $n! > n^2$Use mathematical induction to prove the following $n! < n^n$Mathematical induction by inequalityStuck On A Proof By InductionProve by induction, for all positive integers $n$, that $n!ge2^n-1$
How many time has Arya actually used Needle?
Is it dangerous to install hacking tools on my private linux machine?
AppleTVs create a chatty alternate WiFi network
How to write capital alpha?
Simple HTTP Server
New Order #6: Easter Egg
What adaptations would allow standard fantasy dwarves to survive in the desert?
Is there any word for a place full of confusion?
Asymptotics question
Does the Mueller report show a conspiracy between Russia and the Trump Campaign?
Why do early math courses focus on the cross sections of a cone and not on other 3D objects?
"klopfte jemand" or "jemand klopfte"?
What is the "studentd" process?
What does it mean that physics no longer uses mechanical models to describe phenomena?
Monty Hall Problem-Probability Paradox
i2c bus hangs in master RPi access to MSP430G uC ~1 in 1000 accesses
What is the difference between a "ranged attack" and a "ranged weapon attack"?
Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?
Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?
How often does castling occur in grandmaster games?
Delete free apps from library
Why is it faster to reheat something than it is to cook it?
What does Turing mean by this statement?
How can god fight other gods?
Proof by mathematical induction with the problem $40(2n)! ≥ 30^n$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Proof by Induction (concerning $3^nge1+2n$)Mathematical Induction with InequalitiesProve by using Mathematical induction (sum of the first $n$ odd numbers is $n^2$)Stuck in Induction Inequality: $2^n>3n^2$prove inequality by induction — Discrete mathProve by induction $n! > n^2$Use mathematical induction to prove the following $n! < n^n$Mathematical induction by inequalityStuck On A Proof By InductionProve by induction, for all positive integers $n$, that $n!ge2^n-1$
$begingroup$
I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1
Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.
Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$
$80 ≥ 30$
Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.
(Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)
LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$
RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$
(I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)
$(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$
At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.
inequality induction
$endgroup$
add a comment |
$begingroup$
I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1
Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.
Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$
$80 ≥ 30$
Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.
(Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)
LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$
RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$
(I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)
$(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$
At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.
inequality induction
$endgroup$
$begingroup$
For induction proofs involving an inequality, the restriction on the values of $n$ is almost always going to form part of the proof (see the answer below).
$endgroup$
– 1123581321
2 mins ago
add a comment |
$begingroup$
I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1
Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.
Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$
$80 ≥ 30$
Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.
(Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)
LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$
RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$
(I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)
$(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$
At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.
inequality induction
$endgroup$
I want to start by saying that I have for less trouble handling a non-inequality induction problem. I really don't understand the steps to take to get to the desired end product with these inequality induction proofs. That being said, I feel like I just wrote a mess on my paper that leads me nowhere. Here's my proof so far for the mathematical induction of $40(2n)!≥30^n$, where n ≥ 1
Let P(n) be the statement $40(2n)!≥30^n$ where n ≥ 1.
Basis Step: (n = 1) $LHS = 40 * 2! = 80$ and $RHS = 30^1 = 30$
$80 ≥ 30$
Inductive Step: Assume $P(k)$ is true for $k = 1$. Our goal is to show $P(k+1)$ is true by showing $40(2(k+1))!≥30^k+1$ for $k ≥ 1$.
(Beyond this step I have no clue how to alter the LHS factorial or the RHS exponent in such a way to benefit me. Below is my work so far)
LHS: (I tried to multiply $(2k+2)(2k+1)$ to both sides, but then I didn't see how that would help)$40(2k)!≥30^k = (2k)!*40≥30^k = (2k+2)(2k+1)(2k)!*40≥30^k*(2k+2)(2k+1)$
RHS: $40(2(k+1))!≥30^k+1=(2k+2)!*40≥30^k+1=(2k+2)(2k+1)(2k)!*40≥30^k+1$ $=(2k+2)(2k+1)(2k)!*40≥30*30^k$
(I then assumed the inductive hypothesis and placed $40(2k)!≥30^k$ in the middle to get...)
$(2k+2)(2k+1)(2k)!*40≥40(2k)!≥30^k≥30*30^k$
At this point, I've got nothing. I know that $30^k≥30*30^k$ makes no sense, but I don't know where to move $30*30^k$ since I can't assume that $40(2k)!≥30*30^k$. I don't have any clue how I can manipulate either side to help me.
inequality induction
inequality induction
edited 3 mins ago
YuiTo Cheng
2,58641037
2,58641037
asked 2 hours ago
Nick SabiaNick Sabia
566
566
$begingroup$
For induction proofs involving an inequality, the restriction on the values of $n$ is almost always going to form part of the proof (see the answer below).
$endgroup$
– 1123581321
2 mins ago
add a comment |
$begingroup$
For induction proofs involving an inequality, the restriction on the values of $n$ is almost always going to form part of the proof (see the answer below).
$endgroup$
– 1123581321
2 mins ago
$begingroup$
For induction proofs involving an inequality, the restriction on the values of $n$ is almost always going to form part of the proof (see the answer below).
$endgroup$
– 1123581321
2 mins ago
$begingroup$
For induction proofs involving an inequality, the restriction on the values of $n$ is almost always going to form part of the proof (see the answer below).
$endgroup$
– 1123581321
2 mins ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,
$$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
$$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
$$ ge 30^k cdot 30 forall k ge 2$$
$$ ge 30^k+1$$
So you need to verify the proposition for $k=2$ and proceed with the induction.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195436%2fproof-by-mathematical-induction-with-the-problem-402n-%25e2%2589%25a5-30n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,
$$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
$$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
$$ ge 30^k cdot 30 forall k ge 2$$
$$ ge 30^k+1$$
So you need to verify the proposition for $k=2$ and proceed with the induction.
$endgroup$
add a comment |
$begingroup$
For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,
$$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
$$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
$$ ge 30^k cdot 30 forall k ge 2$$
$$ ge 30^k+1$$
So you need to verify the proposition for $k=2$ and proceed with the induction.
$endgroup$
add a comment |
$begingroup$
For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,
$$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
$$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
$$ ge 30^k cdot 30 forall k ge 2$$
$$ ge 30^k+1$$
So you need to verify the proposition for $k=2$ and proceed with the induction.
$endgroup$
For $k ge 2$, $(2k+1)(2k+2) ge 30$. Hence if $P(k)$ is true for $k=1$ and $k=2$,
$$P(k+1) = 40(2k+2)! = 40(2k)! (2k+1)(2k+2)$$
$$ge 30^k (2k+1)(2k+2)quadquadquad (since 40(2k)! >= 30^k by P(k))$$
$$ ge 30^k cdot 30 forall k ge 2$$
$$ ge 30^k+1$$
So you need to verify the proposition for $k=2$ and proceed with the induction.
answered 1 hour ago
user1952500user1952500
1,133812
1,133812
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195436%2fproof-by-mathematical-induction-with-the-problem-402n-%25e2%2589%25a5-30n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For induction proofs involving an inequality, the restriction on the values of $n$ is almost always going to form part of the proof (see the answer below).
$endgroup$
– 1123581321
2 mins ago