Taylor series of product of two functions Announcing the arrival of Valued Associate #679:...

How to change the tick of the color bar legend to black

How to ask rejected full-time candidates to apply to teach individual courses?

Resize vertical bars (absolute-value symbols)

How does light 'choose' between wave and particle behaviour?

Simple Line in LaTeX Help!

Understanding p-Values using an example

After Sam didn't return home in the end, were he and Al still friends?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

How much damage would a cupful of neutron star matter do to the Earth?

Was Kant an Intuitionist about mathematical objects?

What does Turing mean by this statement?

Why is the change of basis formula counter-intuitive? [See details]

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Why not use the yoke to control yaw, as well as pitch and roll?

Did pre-Columbian Americans know the spherical shape of the Earth?

Tannaka duality for semisimple groups

Why is a lens darker than other ones when applying the same settings?

Why datecode is SO IMPORTANT to chip manufacturers?

Can you force honesty by using the Speak with Dead and Zone of Truth spells together?

Is there any word for a place full of confusion?

Does silver oxide react with hydrogen sulfide?

Weaponising the Grasp-at-a-Distance spell

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?



Taylor series of product of two functions



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Proving an inequality with Taylor polynomialsIntuition behind Taylor/Maclaurin SeriesUse of taylor series in convergenceRunge Phenomena and Taylor ExpansionWhat is the justification for taylor series for functions with one or no critical points?Marsden's definition of Taylor SeriesFind the Taylor series of $f(x)=sum_{k=0}^infty frac{2^{-k}}{k+1}(x-1)^k$Smoothness of Taylor polynomials coefficients as function of position of expansion?Taylor series with initial value of infinityMisunderstanding about Taylor series












4












$begingroup$


let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    Mar 26 at 2:08


















4












$begingroup$


let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    Mar 26 at 2:08
















4












4








4


1



$begingroup$


let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.










share|cite|improve this question











$endgroup$




let $f$ and $g$ be infinitley differentiable functions and $a_k = frac{f^{(k)}(a)}{k!}$ and $b_e = frac{g^{(e)}(a)}{e!}$ be cofficients of Taylor Polynomial at $a$ then what would be the coefficients of $fg$.



rather than asking my specific question I asked this general question so other can benefit too



So I think we would need to multiply the two polynomials but that's just my intuition and I don't know how to justify it and I don't think it would be as simple.







analysis taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 26 at 2:08







Conor

















asked Mar 26 at 1:16









ConorConor

576




576








  • 1




    $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    Mar 26 at 2:08
















  • 1




    $begingroup$
    Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
    $endgroup$
    – robjohn
    Mar 26 at 2:08










1




1




$begingroup$
Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
$endgroup$
– robjohn
Mar 26 at 2:08






$begingroup$
Is it supposed to be $b_e=frac{g^{(e)}(a)}{e!}$ ? If so, look up the Cauchy Product Formula.
$endgroup$
– robjohn
Mar 26 at 2:08












1 Answer
1






active

oldest

votes


















4












$begingroup$

Your intuition is good.



Multiplying the series gives an n-th term coefficient of



$$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



which is the same as doing the Taylor series of $fg$ the long way, since



$$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
    $endgroup$
    – J. M. is a poor mathematician
    Mar 26 at 6:11












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162570%2ftaylor-series-of-product-of-two-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Your intuition is good.



Multiplying the series gives an n-th term coefficient of



$$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



which is the same as doing the Taylor series of $fg$ the long way, since



$$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
    $endgroup$
    – J. M. is a poor mathematician
    Mar 26 at 6:11
















4












$begingroup$

Your intuition is good.



Multiplying the series gives an n-th term coefficient of



$$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



which is the same as doing the Taylor series of $fg$ the long way, since



$$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
    $endgroup$
    – J. M. is a poor mathematician
    Mar 26 at 6:11














4












4








4





$begingroup$

Your intuition is good.



Multiplying the series gives an n-th term coefficient of



$$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



which is the same as doing the Taylor series of $fg$ the long way, since



$$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$






share|cite|improve this answer









$endgroup$



Your intuition is good.



Multiplying the series gives an n-th term coefficient of



$$c_n = a_0b_n + a_1b_{n-1} + dots + a_{n-1}b_1 + a_nb_0= sum_{i=0}^n a_i b_{n-i}$$



which is the same as doing the Taylor series of $fg$ the long way, since



$$c_n = frac{(fg)^{(n)}(a)}{n!} = frac{sum_{i=0}^n binom{n}{i}f^{(i)}(a)g^{(n-i)}(a)}{n!} = sum_{i=0}^n frac{f^{(i)}(a)}{i!} frac{g^{(n-i)}(a)}{(n-i)!} = sum_{i=0}^n a_i b_{n-i}$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 26 at 1:33









Michael BiroMichael Biro

11.7k21931




11.7k21931












  • $begingroup$
    In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
    $endgroup$
    – J. M. is a poor mathematician
    Mar 26 at 6:11


















  • $begingroup$
    In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
    $endgroup$
    – J. M. is a poor mathematician
    Mar 26 at 6:11
















$begingroup$
In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 6:11




$begingroup$
In words: the coefficients of the product of two power series is the convolution of the coefficients of the factors.
$endgroup$
– J. M. is a poor mathematician
Mar 26 at 6:11


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162570%2ftaylor-series-of-product-of-two-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Nidaros erkebispedøme

Birsay

Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...