Proving convergence/divergence of this series?hard time with series convergence or divergenceSeries...
Was Stan Lee's cameo in Captain Marvel computer generated?
Difference between `nmap local-IP-address` and `nmap localhost`
What would be the most expensive material to an intergalactic society?
If sound is a longitudinal wave, why can we hear it if our ears aren't aligned with the propagation direction?
What does *dead* mean in *What do you mean, dead?*?
What can I do if someone tampers with my SSH public key?
Psychology of 'flow'
Computation logic of Partway in TikZ
Professor forcing me to attend a conference, I can't afford even with 50% funding
Is there a math expression equivalent to the conditional ternary operator?
Locked Away- What am I?
Was it really inappropriate to write a pull request for the company I interviewed with?
Is "cogitate" used appropriately in "I cogitate that success relies on hard work"?
Is there a logarithm base for which the logarithm becomes an identity function?
Called into a meeting and told we are being made redundant (laid off) and "not to share outside". Can I tell my partner?
Either of .... (Plural/Singular)
Prove this function has at most two zero points
Should I apply for my boss's promotion?
A running toilet that stops itself
Is it a Cyclops number? "Nobody" knows!
Rationale to prefer local variables over instance variables?
I've given my players a lot of magic items. Is it reasonable for me to give them harder encounters?
Why do phishing e-mails use faked e-mail addresses instead of the real one?
Two swapfiles, hibernate working, how to correctly configure hibernate to not run out of space, or fail somehow
Proving convergence/divergence of this series?
hard time with series convergence or divergenceSeries convergence/divergenceProving uniform convergence of this seriesProving convergence/divergence for $p$-seriesProving the convergence/divergence of a seemingly oscillating seriesFinding the convergence/divergence of a seriesConvergence of series/absolute convergenceShow the convergence or divergence of seriesDivergent infinite series $n!e^n/n^n$ - simpler proof of divergence?Help with convergence tests for series
$begingroup$
$$sum_{k=0}^{infty}frac{(k!)}{(k+1)!+2^k}$$
Anyone know how to show that this series converges or diverges? I've tried multiple tests and nothing seems to be working. Any help would be amazing!
sequences-and-series convergence
New contributor
$endgroup$
add a comment |
$begingroup$
$$sum_{k=0}^{infty}frac{(k!)}{(k+1)!+2^k}$$
Anyone know how to show that this series converges or diverges? I've tried multiple tests and nothing seems to be working. Any help would be amazing!
sequences-and-series convergence
New contributor
$endgroup$
add a comment |
$begingroup$
$$sum_{k=0}^{infty}frac{(k!)}{(k+1)!+2^k}$$
Anyone know how to show that this series converges or diverges? I've tried multiple tests and nothing seems to be working. Any help would be amazing!
sequences-and-series convergence
New contributor
$endgroup$
$$sum_{k=0}^{infty}frac{(k!)}{(k+1)!+2^k}$$
Anyone know how to show that this series converges or diverges? I've tried multiple tests and nothing seems to be working. Any help would be amazing!
sequences-and-series convergence
sequences-and-series convergence
New contributor
New contributor
edited yesterday
mrtaurho
5,74551540
5,74551540
New contributor
asked yesterday
Bob JonesBob Jones
192
192
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since $(k+1)!$ grows faster than $2^k$ there exist some $K_0$ so that the denominator is equivalent to $(k+1)!$ for $forall kgeq K_0$ then:$sum_0^inftyfrac{k!}{(k+1)!+2^k} simsum_{K_0}^infty frac{1}{k+1}rightarrowinfty$
Edit: I'll clarify my steps as suggested.
$(1)$ $k!ge 2^k$ for big enough k
Proof:
Consider $f_k=dfrac{k!}{2^k}$; the Limit $displaystyle{lim_{krightarrowinfty}dfrac{f_{k+1}}{f_k}=lim_{ktoinfty}dfrac{k+1}{2}=infty};$
By the ratio test $displaystyle{lim_{ktoinfty}f_k=infty}$
So by the precise definition of a limit there exist some $K_0inmathbb{N}$ so that for all $kge K_0Rightarrow k!ge2^k$
We also get that $displaystyle{lim_{ktoinfty}frac{1}{f_k}=lim_{ktoinfty}frac{2^k}{k!}=0}$
(2) "Let $a_k=dfrac{k!}{(k+1)!+2^k}$and $b_k=dfrac{k!}{(k+1)!}$ then if $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=L, Lin(0,infty)}$ by the limit comparision test the series associated to $a_k,b_k$ either both diverge or both converge."
Proof that the limit exist:
$displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=lim_{ktoinfty}frac{(k+1)!}{(k+1)!+2^k}=lim_{ktoinfty}cfrac{1}{1+dfrac{2^k}{(k+1)!}}=dfrac{1}{displaystyle{lim_{ktoinfty}1+frac{2^k}{(k+1)!}}}}$.
$displaystyle{lim_{ktoinfty}frac{2^k}{(k+1)!}}=lim_{ktoinfty}frac{1}{k+1}frac{2^k}{k!}=0cdot0=0$
We get that $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=1}$
So by the limit comparision test:
$$sum_{K_0}^{infty}b_k=sum_{K_0}^{infty}dfrac{1}{k+1}=inftyRightarrow sum_{K_0}^{infty}a_k=infty$$
$endgroup$
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
add a comment |
$begingroup$
I suggest to divide the numerator and the denominator of the fraction by $k!$:
$$
frac{k!}{(k+1)! + 2^k} = frac{1}{k+1 + frac{2^k}{k!}} geq frac{1}{k+3} ,
$$
since $frac{2^k}{k!} leq 2$ for all positive integer $k$.
Thus
$$
sum_{k=0}^{infty} frac{k!}{(k+1)! + 2^k} geq sum_{k=0}^{infty} frac{1}{k+3} .
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Bob Jones is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3139620%2fproving-convergence-divergence-of-this-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $(k+1)!$ grows faster than $2^k$ there exist some $K_0$ so that the denominator is equivalent to $(k+1)!$ for $forall kgeq K_0$ then:$sum_0^inftyfrac{k!}{(k+1)!+2^k} simsum_{K_0}^infty frac{1}{k+1}rightarrowinfty$
Edit: I'll clarify my steps as suggested.
$(1)$ $k!ge 2^k$ for big enough k
Proof:
Consider $f_k=dfrac{k!}{2^k}$; the Limit $displaystyle{lim_{krightarrowinfty}dfrac{f_{k+1}}{f_k}=lim_{ktoinfty}dfrac{k+1}{2}=infty};$
By the ratio test $displaystyle{lim_{ktoinfty}f_k=infty}$
So by the precise definition of a limit there exist some $K_0inmathbb{N}$ so that for all $kge K_0Rightarrow k!ge2^k$
We also get that $displaystyle{lim_{ktoinfty}frac{1}{f_k}=lim_{ktoinfty}frac{2^k}{k!}=0}$
(2) "Let $a_k=dfrac{k!}{(k+1)!+2^k}$and $b_k=dfrac{k!}{(k+1)!}$ then if $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=L, Lin(0,infty)}$ by the limit comparision test the series associated to $a_k,b_k$ either both diverge or both converge."
Proof that the limit exist:
$displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=lim_{ktoinfty}frac{(k+1)!}{(k+1)!+2^k}=lim_{ktoinfty}cfrac{1}{1+dfrac{2^k}{(k+1)!}}=dfrac{1}{displaystyle{lim_{ktoinfty}1+frac{2^k}{(k+1)!}}}}$.
$displaystyle{lim_{ktoinfty}frac{2^k}{(k+1)!}}=lim_{ktoinfty}frac{1}{k+1}frac{2^k}{k!}=0cdot0=0$
We get that $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=1}$
So by the limit comparision test:
$$sum_{K_0}^{infty}b_k=sum_{K_0}^{infty}dfrac{1}{k+1}=inftyRightarrow sum_{K_0}^{infty}a_k=infty$$
$endgroup$
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
add a comment |
$begingroup$
Since $(k+1)!$ grows faster than $2^k$ there exist some $K_0$ so that the denominator is equivalent to $(k+1)!$ for $forall kgeq K_0$ then:$sum_0^inftyfrac{k!}{(k+1)!+2^k} simsum_{K_0}^infty frac{1}{k+1}rightarrowinfty$
Edit: I'll clarify my steps as suggested.
$(1)$ $k!ge 2^k$ for big enough k
Proof:
Consider $f_k=dfrac{k!}{2^k}$; the Limit $displaystyle{lim_{krightarrowinfty}dfrac{f_{k+1}}{f_k}=lim_{ktoinfty}dfrac{k+1}{2}=infty};$
By the ratio test $displaystyle{lim_{ktoinfty}f_k=infty}$
So by the precise definition of a limit there exist some $K_0inmathbb{N}$ so that for all $kge K_0Rightarrow k!ge2^k$
We also get that $displaystyle{lim_{ktoinfty}frac{1}{f_k}=lim_{ktoinfty}frac{2^k}{k!}=0}$
(2) "Let $a_k=dfrac{k!}{(k+1)!+2^k}$and $b_k=dfrac{k!}{(k+1)!}$ then if $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=L, Lin(0,infty)}$ by the limit comparision test the series associated to $a_k,b_k$ either both diverge or both converge."
Proof that the limit exist:
$displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=lim_{ktoinfty}frac{(k+1)!}{(k+1)!+2^k}=lim_{ktoinfty}cfrac{1}{1+dfrac{2^k}{(k+1)!}}=dfrac{1}{displaystyle{lim_{ktoinfty}1+frac{2^k}{(k+1)!}}}}$.
$displaystyle{lim_{ktoinfty}frac{2^k}{(k+1)!}}=lim_{ktoinfty}frac{1}{k+1}frac{2^k}{k!}=0cdot0=0$
We get that $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=1}$
So by the limit comparision test:
$$sum_{K_0}^{infty}b_k=sum_{K_0}^{infty}dfrac{1}{k+1}=inftyRightarrow sum_{K_0}^{infty}a_k=infty$$
$endgroup$
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
add a comment |
$begingroup$
Since $(k+1)!$ grows faster than $2^k$ there exist some $K_0$ so that the denominator is equivalent to $(k+1)!$ for $forall kgeq K_0$ then:$sum_0^inftyfrac{k!}{(k+1)!+2^k} simsum_{K_0}^infty frac{1}{k+1}rightarrowinfty$
Edit: I'll clarify my steps as suggested.
$(1)$ $k!ge 2^k$ for big enough k
Proof:
Consider $f_k=dfrac{k!}{2^k}$; the Limit $displaystyle{lim_{krightarrowinfty}dfrac{f_{k+1}}{f_k}=lim_{ktoinfty}dfrac{k+1}{2}=infty};$
By the ratio test $displaystyle{lim_{ktoinfty}f_k=infty}$
So by the precise definition of a limit there exist some $K_0inmathbb{N}$ so that for all $kge K_0Rightarrow k!ge2^k$
We also get that $displaystyle{lim_{ktoinfty}frac{1}{f_k}=lim_{ktoinfty}frac{2^k}{k!}=0}$
(2) "Let $a_k=dfrac{k!}{(k+1)!+2^k}$and $b_k=dfrac{k!}{(k+1)!}$ then if $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=L, Lin(0,infty)}$ by the limit comparision test the series associated to $a_k,b_k$ either both diverge or both converge."
Proof that the limit exist:
$displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=lim_{ktoinfty}frac{(k+1)!}{(k+1)!+2^k}=lim_{ktoinfty}cfrac{1}{1+dfrac{2^k}{(k+1)!}}=dfrac{1}{displaystyle{lim_{ktoinfty}1+frac{2^k}{(k+1)!}}}}$.
$displaystyle{lim_{ktoinfty}frac{2^k}{(k+1)!}}=lim_{ktoinfty}frac{1}{k+1}frac{2^k}{k!}=0cdot0=0$
We get that $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=1}$
So by the limit comparision test:
$$sum_{K_0}^{infty}b_k=sum_{K_0}^{infty}dfrac{1}{k+1}=inftyRightarrow sum_{K_0}^{infty}a_k=infty$$
$endgroup$
Since $(k+1)!$ grows faster than $2^k$ there exist some $K_0$ so that the denominator is equivalent to $(k+1)!$ for $forall kgeq K_0$ then:$sum_0^inftyfrac{k!}{(k+1)!+2^k} simsum_{K_0}^infty frac{1}{k+1}rightarrowinfty$
Edit: I'll clarify my steps as suggested.
$(1)$ $k!ge 2^k$ for big enough k
Proof:
Consider $f_k=dfrac{k!}{2^k}$; the Limit $displaystyle{lim_{krightarrowinfty}dfrac{f_{k+1}}{f_k}=lim_{ktoinfty}dfrac{k+1}{2}=infty};$
By the ratio test $displaystyle{lim_{ktoinfty}f_k=infty}$
So by the precise definition of a limit there exist some $K_0inmathbb{N}$ so that for all $kge K_0Rightarrow k!ge2^k$
We also get that $displaystyle{lim_{ktoinfty}frac{1}{f_k}=lim_{ktoinfty}frac{2^k}{k!}=0}$
(2) "Let $a_k=dfrac{k!}{(k+1)!+2^k}$and $b_k=dfrac{k!}{(k+1)!}$ then if $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=L, Lin(0,infty)}$ by the limit comparision test the series associated to $a_k,b_k$ either both diverge or both converge."
Proof that the limit exist:
$displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=lim_{ktoinfty}frac{(k+1)!}{(k+1)!+2^k}=lim_{ktoinfty}cfrac{1}{1+dfrac{2^k}{(k+1)!}}=dfrac{1}{displaystyle{lim_{ktoinfty}1+frac{2^k}{(k+1)!}}}}$.
$displaystyle{lim_{ktoinfty}frac{2^k}{(k+1)!}}=lim_{ktoinfty}frac{1}{k+1}frac{2^k}{k!}=0cdot0=0$
We get that $displaystyle{lim_{ktoinfty}frac{a_k}{b_k}=1}$
So by the limit comparision test:
$$sum_{K_0}^{infty}b_k=sum_{K_0}^{infty}dfrac{1}{k+1}=inftyRightarrow sum_{K_0}^{infty}a_k=infty$$
edited 2 hours ago
BarzanHayati
1458
1458
answered yesterday
Sebastian CorSebastian Cor
948
948
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
add a comment |
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
Please edit denominator of fraction in series. I think you must explain more about this approximation
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
$sum_0^inftyfrac{k!}{(k+1)!+2^k} < sum_{0}^infty frac{1}{k+1}rightarrow$. But how to conclude that it would be a divergent series?
$endgroup$
– BarzanHayati
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
$begingroup$
I edited my answer, I hope it is clear now.
$endgroup$
– Sebastian Cor
yesterday
add a comment |
$begingroup$
I suggest to divide the numerator and the denominator of the fraction by $k!$:
$$
frac{k!}{(k+1)! + 2^k} = frac{1}{k+1 + frac{2^k}{k!}} geq frac{1}{k+3} ,
$$
since $frac{2^k}{k!} leq 2$ for all positive integer $k$.
Thus
$$
sum_{k=0}^{infty} frac{k!}{(k+1)! + 2^k} geq sum_{k=0}^{infty} frac{1}{k+3} .
$$
$endgroup$
add a comment |
$begingroup$
I suggest to divide the numerator and the denominator of the fraction by $k!$:
$$
frac{k!}{(k+1)! + 2^k} = frac{1}{k+1 + frac{2^k}{k!}} geq frac{1}{k+3} ,
$$
since $frac{2^k}{k!} leq 2$ for all positive integer $k$.
Thus
$$
sum_{k=0}^{infty} frac{k!}{(k+1)! + 2^k} geq sum_{k=0}^{infty} frac{1}{k+3} .
$$
$endgroup$
add a comment |
$begingroup$
I suggest to divide the numerator and the denominator of the fraction by $k!$:
$$
frac{k!}{(k+1)! + 2^k} = frac{1}{k+1 + frac{2^k}{k!}} geq frac{1}{k+3} ,
$$
since $frac{2^k}{k!} leq 2$ for all positive integer $k$.
Thus
$$
sum_{k=0}^{infty} frac{k!}{(k+1)! + 2^k} geq sum_{k=0}^{infty} frac{1}{k+3} .
$$
$endgroup$
I suggest to divide the numerator and the denominator of the fraction by $k!$:
$$
frac{k!}{(k+1)! + 2^k} = frac{1}{k+1 + frac{2^k}{k!}} geq frac{1}{k+3} ,
$$
since $frac{2^k}{k!} leq 2$ for all positive integer $k$.
Thus
$$
sum_{k=0}^{infty} frac{k!}{(k+1)! + 2^k} geq sum_{k=0}^{infty} frac{1}{k+3} .
$$
answered 23 hours ago
ErtxiemErtxiem
585
585
add a comment |
add a comment |
Bob Jones is a new contributor. Be nice, and check out our Code of Conduct.
Bob Jones is a new contributor. Be nice, and check out our Code of Conduct.
Bob Jones is a new contributor. Be nice, and check out our Code of Conduct.
Bob Jones is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3139620%2fproving-convergence-divergence-of-this-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown