Adding two cosine waves, result in the standard A*cos(ωt + B) formDrawing sine and cosine...

Can elves maintain concentration in a trance?

Why doesn't the EU now just force the UK to choose between referendum and no-deal?

Provisioning profile doesn't include the application-identifier and keychain-access-groups entitlements

When do we add an hyphen (-) to a complex adjective word?

Have researchers managed to "reverse time"? If so, what does that mean for physics?

Should we release the security issues we found in our product as CVE or we can just update those on weekly release notes?

Brexit - No Deal Rejection

Russian cases: A few examples, I'm really confused

Why did it take so long to abandon sail after steamships were demonstrated?

Is it possible that AIC = BIC?

How do anti-virus programs start at Windows boot?

Happy pi day, everyone!

Do I need life insurance if I can cover my own funeral costs?

Informing my boss about remarks from a nasty colleague

Unreachable code, but reachable with exception

How to make healing in an exploration game interesting

Professor being mistaken for a grad student

Bash: What does "masking return values" mean?

Why are there 40 737 Max planes in flight when they have been grounded as not airworthy?

Is it true that real estate prices mainly go up?

Replacing Windows 7 security updates with anti-virus?

How to generate globally unique ids for different tables of the same database?

What is the greatest age difference between a married couple in Tanach?

Using "wallow" verb with object



Adding two cosine waves, result in the standard A*cos(ωt + B) form


Drawing sine and cosine wavesSum/Difference Cosine WavesGiven a signal in the time domain, is there a way to determine a function that produces that signal?Averaging cosine with a randomly varying argumentApproximate a polynomial function using a sum of sine wavesAdding two sine waves using eulerMax of sum of sinusoids with arbitrary frequenciesSuperposition of two wavesExpected value of sum of N sines with random phase differencesSum of Cosine Waves













1












$begingroup$


Let's say I have the composite wave:



$y(t) = cos(40t) - 0.3 cos(40t - 16)$



This combines two waves of the same frequency but different phases, and the objective here is to add them and present the result in the simplified form, as a single real amplitude multiplied by a single cosine. I have tried complex analysis, via $operatorname{Re}[e^{i40t}(1-0.3e^{-i16})]$, but I still can't get a result out of it. May I ask what I might be missing here?










share|cite|improve this question









New contributor




aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    1












    $begingroup$


    Let's say I have the composite wave:



    $y(t) = cos(40t) - 0.3 cos(40t - 16)$



    This combines two waves of the same frequency but different phases, and the objective here is to add them and present the result in the simplified form, as a single real amplitude multiplied by a single cosine. I have tried complex analysis, via $operatorname{Re}[e^{i40t}(1-0.3e^{-i16})]$, but I still can't get a result out of it. May I ask what I might be missing here?










    share|cite|improve this question









    New contributor




    aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      1












      1








      1


      1



      $begingroup$


      Let's say I have the composite wave:



      $y(t) = cos(40t) - 0.3 cos(40t - 16)$



      This combines two waves of the same frequency but different phases, and the objective here is to add them and present the result in the simplified form, as a single real amplitude multiplied by a single cosine. I have tried complex analysis, via $operatorname{Re}[e^{i40t}(1-0.3e^{-i16})]$, but I still can't get a result out of it. May I ask what I might be missing here?










      share|cite|improve this question









      New contributor




      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Let's say I have the composite wave:



      $y(t) = cos(40t) - 0.3 cos(40t - 16)$



      This combines two waves of the same frequency but different phases, and the objective here is to add them and present the result in the simplified form, as a single real amplitude multiplied by a single cosine. I have tried complex analysis, via $operatorname{Re}[e^{i40t}(1-0.3e^{-i16})]$, but I still can't get a result out of it. May I ask what I might be missing here?







      trigonometry signal-processing






      share|cite|improve this question









      New contributor




      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited Mar 10 at 14:04









      Bernard

      123k741116




      123k741116






      New contributor




      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Mar 10 at 13:58









      aaaaaaaaaa

      85




      85




      New contributor




      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      aaaaa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          your working is fine until



          $Re[e^{j40t}[1-0.3e^{-j16}]]$ now, remove time varying part ( harmonic part) and focus on it's phasor and write it in Euler form as i.e, $[1-0.3e^{-j16}]=1.28-0.0863j=1.282 e^{-j0.0673}$



          since wave is nothing but $=$ Re part of $[ text{phasor}$$times$ $e^{jomega t}]$



          so, your wave is $1.282 cos(omega t-0.0673)$ in your case phasor is rotating with frequency 40 radian per second in Anti clock wise direction i.e,put $omega=40$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
            $endgroup$
            – aaaaa
            Mar 10 at 20:25



















          0












          $begingroup$

          $$cos{(40t)}-0.3cos{(40t-16)}$$
          $$=cos{(40t)}-0.3cos{(16)}cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
          $$=(1-0.3cos{(16)})cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
          Now we want the above expression in the form
          $$R cos{(40t+alpha)}=Rcos{(alpha)}cos{(40t)}-Rsin{(alpha)}sin{(40t)}$$
          So, equating coefficients of $cos{(40t)}$ and $sin{(40t)}$ we have
          $$Rcos{(alpha)}=1-0.3cos{(16)}$$
          $$Rsin{(alpha)}=0.3sin{(16)}$$
          Which we can solve simultaneously to give
          $$R=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2}$$
          $$alpha=arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}$$
          So, the answer is
          $$cos{(40t)}-0.3cos{(40t-16)}$$
          $$=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2} timescos{bigg(40t+arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}bigg)}$$
          $$approx 1.290192113cos{(40t-0.06699439337)}$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            aaaaa is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142402%2fadding-two-cosine-waves-result-in-the-standard-acos%25cf%2589t-b-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            your working is fine until



            $Re[e^{j40t}[1-0.3e^{-j16}]]$ now, remove time varying part ( harmonic part) and focus on it's phasor and write it in Euler form as i.e, $[1-0.3e^{-j16}]=1.28-0.0863j=1.282 e^{-j0.0673}$



            since wave is nothing but $=$ Re part of $[ text{phasor}$$times$ $e^{jomega t}]$



            so, your wave is $1.282 cos(omega t-0.0673)$ in your case phasor is rotating with frequency 40 radian per second in Anti clock wise direction i.e,put $omega=40$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
              $endgroup$
              – aaaaa
              Mar 10 at 20:25
















            0












            $begingroup$

            your working is fine until



            $Re[e^{j40t}[1-0.3e^{-j16}]]$ now, remove time varying part ( harmonic part) and focus on it's phasor and write it in Euler form as i.e, $[1-0.3e^{-j16}]=1.28-0.0863j=1.282 e^{-j0.0673}$



            since wave is nothing but $=$ Re part of $[ text{phasor}$$times$ $e^{jomega t}]$



            so, your wave is $1.282 cos(omega t-0.0673)$ in your case phasor is rotating with frequency 40 radian per second in Anti clock wise direction i.e,put $omega=40$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
              $endgroup$
              – aaaaa
              Mar 10 at 20:25














            0












            0








            0





            $begingroup$

            your working is fine until



            $Re[e^{j40t}[1-0.3e^{-j16}]]$ now, remove time varying part ( harmonic part) and focus on it's phasor and write it in Euler form as i.e, $[1-0.3e^{-j16}]=1.28-0.0863j=1.282 e^{-j0.0673}$



            since wave is nothing but $=$ Re part of $[ text{phasor}$$times$ $e^{jomega t}]$



            so, your wave is $1.282 cos(omega t-0.0673)$ in your case phasor is rotating with frequency 40 radian per second in Anti clock wise direction i.e,put $omega=40$






            share|cite|improve this answer









            $endgroup$



            your working is fine until



            $Re[e^{j40t}[1-0.3e^{-j16}]]$ now, remove time varying part ( harmonic part) and focus on it's phasor and write it in Euler form as i.e, $[1-0.3e^{-j16}]=1.28-0.0863j=1.282 e^{-j0.0673}$



            since wave is nothing but $=$ Re part of $[ text{phasor}$$times$ $e^{jomega t}]$



            so, your wave is $1.282 cos(omega t-0.0673)$ in your case phasor is rotating with frequency 40 radian per second in Anti clock wise direction i.e,put $omega=40$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 10 at 14:51









            Faraday PathakFaraday Pathak

            1,165316




            1,165316








            • 1




              $begingroup$
              Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
              $endgroup$
              – aaaaa
              Mar 10 at 20:25














            • 1




              $begingroup$
              Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
              $endgroup$
              – aaaaa
              Mar 10 at 20:25








            1




            1




            $begingroup$
            Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
            $endgroup$
            – aaaaa
            Mar 10 at 20:25




            $begingroup$
            Yeah, plus the fact that you calculate the absolute value with the square root of Re^2 + Im^2, and the argument of the exponential with the arctangent of Im/Re - both things that the guy from the other answer directly mentioned. Using complex numbers always simplifies it, so I'm picking your answer as the most straightforward one.
            $endgroup$
            – aaaaa
            Mar 10 at 20:25











            0












            $begingroup$

            $$cos{(40t)}-0.3cos{(40t-16)}$$
            $$=cos{(40t)}-0.3cos{(16)}cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
            $$=(1-0.3cos{(16)})cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
            Now we want the above expression in the form
            $$R cos{(40t+alpha)}=Rcos{(alpha)}cos{(40t)}-Rsin{(alpha)}sin{(40t)}$$
            So, equating coefficients of $cos{(40t)}$ and $sin{(40t)}$ we have
            $$Rcos{(alpha)}=1-0.3cos{(16)}$$
            $$Rsin{(alpha)}=0.3sin{(16)}$$
            Which we can solve simultaneously to give
            $$R=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2}$$
            $$alpha=arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}$$
            So, the answer is
            $$cos{(40t)}-0.3cos{(40t-16)}$$
            $$=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2} timescos{bigg(40t+arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}bigg)}$$
            $$approx 1.290192113cos{(40t-0.06699439337)}$$






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              $$cos{(40t)}-0.3cos{(40t-16)}$$
              $$=cos{(40t)}-0.3cos{(16)}cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
              $$=(1-0.3cos{(16)})cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
              Now we want the above expression in the form
              $$R cos{(40t+alpha)}=Rcos{(alpha)}cos{(40t)}-Rsin{(alpha)}sin{(40t)}$$
              So, equating coefficients of $cos{(40t)}$ and $sin{(40t)}$ we have
              $$Rcos{(alpha)}=1-0.3cos{(16)}$$
              $$Rsin{(alpha)}=0.3sin{(16)}$$
              Which we can solve simultaneously to give
              $$R=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2}$$
              $$alpha=arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}$$
              So, the answer is
              $$cos{(40t)}-0.3cos{(40t-16)}$$
              $$=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2} timescos{bigg(40t+arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}bigg)}$$
              $$approx 1.290192113cos{(40t-0.06699439337)}$$






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                $$cos{(40t)}-0.3cos{(40t-16)}$$
                $$=cos{(40t)}-0.3cos{(16)}cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
                $$=(1-0.3cos{(16)})cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
                Now we want the above expression in the form
                $$R cos{(40t+alpha)}=Rcos{(alpha)}cos{(40t)}-Rsin{(alpha)}sin{(40t)}$$
                So, equating coefficients of $cos{(40t)}$ and $sin{(40t)}$ we have
                $$Rcos{(alpha)}=1-0.3cos{(16)}$$
                $$Rsin{(alpha)}=0.3sin{(16)}$$
                Which we can solve simultaneously to give
                $$R=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2}$$
                $$alpha=arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}$$
                So, the answer is
                $$cos{(40t)}-0.3cos{(40t-16)}$$
                $$=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2} timescos{bigg(40t+arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}bigg)}$$
                $$approx 1.290192113cos{(40t-0.06699439337)}$$






                share|cite|improve this answer











                $endgroup$



                $$cos{(40t)}-0.3cos{(40t-16)}$$
                $$=cos{(40t)}-0.3cos{(16)}cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
                $$=(1-0.3cos{(16)})cos{(40t)}-0.3sin{(16)}sin{(40t)}$$
                Now we want the above expression in the form
                $$R cos{(40t+alpha)}=Rcos{(alpha)}cos{(40t)}-Rsin{(alpha)}sin{(40t)}$$
                So, equating coefficients of $cos{(40t)}$ and $sin{(40t)}$ we have
                $$Rcos{(alpha)}=1-0.3cos{(16)}$$
                $$Rsin{(alpha)}=0.3sin{(16)}$$
                Which we can solve simultaneously to give
                $$R=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2}$$
                $$alpha=arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}$$
                So, the answer is
                $$cos{(40t)}-0.3cos{(40t-16)}$$
                $$=sqrt{(1-0.3cos{(16)})^2+(0.3sin{(16)})^2} timescos{bigg(40t+arctan{bigg(frac{0.3sin{(16)}}{1-0.3cos{(16)}}bigg)}bigg)}$$
                $$approx 1.290192113cos{(40t-0.06699439337)}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 10 at 14:30

























                answered Mar 10 at 14:24









                Peter ForemanPeter Foreman

                3,7921216




                3,7921216






















                    aaaaa is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    aaaaa is a new contributor. Be nice, and check out our Code of Conduct.













                    aaaaa is a new contributor. Be nice, and check out our Code of Conduct.












                    aaaaa is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142402%2fadding-two-cosine-waves-result-in-the-standard-acos%25cf%2589t-b-form%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Nidaros erkebispedøme

                    Birsay

                    Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...