Evaluating the improper integral $int_0^infty frac{xcos x-sin x}{x^3} cos(frac{x}{2}) mathrm dx $Derivative...
label a part of commutative diagram
What (if any) is the reason to buy in small local stores?
Homology of the fiber
Imaginary part of expression too difficult to calculate
How old is Nick Fury?
Unfrosted light bulb
Does the Shadow Magic sorcerer's Eyes of the Dark feature work on all Darkness spells or just his/her own?
Exit shell with shortcut (not typing exit) that closes session properly
Does fire aspect on a sword, destroy mob drops?
What is it called when someone votes for an option that's not their first choice?
Should I be concerned about student access to a test bank?
How are passwords stolen from companies if they only store hashes?
Is this Pascal's Matrix?
Hot air balloons as primitive bombers
Could any one tell what PN is this Chip? Thanks~
What kind of footwear is suitable for walking in micro gravity environment?
Did Nintendo change its mind about 68000 SNES?
What favor did Moody owe Dumbledore?
Pre-Employment Background Check With Consent For Future Checks
Should a narrator ever describe things based on a characters view instead of fact?
Why doesn't the fusion process of the sun speed up?
is this saw blade faulty?
Was World War I a war of liberals against authoritarians?
Do I need to convey a moral for each of my blog post?
Evaluating the improper integral $int_0^infty frac{xcos x-sin x}{x^3} cos(frac{x}{2}) mathrm dx $
Derivative of a Delta functionProof that $int_0^{2pi}sin nx,dx=int_0^{2pi}cos nx,dx=0$Hints on evaluating this complex integral?How to simplify the integral of $intfrac{cos(8x)}{cos(4x)+sin(4x)}dx$?About the integral $int_{0}^{1}frac{log(x)log^2(1+x)}{x},dx$Definite integral $int_{-1}^{1} e^{frac{1}{x^2-1}}cos{ax},dx$Trigonometric Definite IntegralEvaluate the integral $int_0^infty frac{sin(ax)}{x} frac{sin(bx)}{x}e^{-kx}dx$Integral $int_0^infty frac{x^{2j}mathrm dx}{(x^4+2ax^2+1)^{n+1}}$Solve $intlimits_{0}^{infty}frac{sin(x)}{xe^x} dx.$
$begingroup$
I've been working through the following integral and am stumped:
$$int_0^infty frac{xcos x-sin x}{x^3}cosleft(frac{x}{2}right)mathrm dx$$
Given the questions in my class that have proceeded and followed this integral, I believe that this is some form of Fourier transform/integral. However, it doesn't look like any of the content surrounding it. That is, there is no $e^{-ikx}$ or $g(k)$ or anything else that I'm familiar with.
I know that it's an even function, but that's about as far as I can get. If I try to split it over the subtraction, I get two non-converging integrals, so that wasn't much help either. I've been throwing lots of trig identities at it but nothing familiar has appeared yet.
Any help would be greatly appreciated.
Thank you.
calculus integration fourier-analysis improper-integrals fourier-transform
$endgroup$
This question had a bounty worth +150
reputation from Tyler6 that ended 1 hour ago. Grace period ends in 22 hours
The current answer(s) are out-of-date and require revision given recent changes.
Would like an answer that used Fourier Transforms as initially requested
add a comment |
$begingroup$
I've been working through the following integral and am stumped:
$$int_0^infty frac{xcos x-sin x}{x^3}cosleft(frac{x}{2}right)mathrm dx$$
Given the questions in my class that have proceeded and followed this integral, I believe that this is some form of Fourier transform/integral. However, it doesn't look like any of the content surrounding it. That is, there is no $e^{-ikx}$ or $g(k)$ or anything else that I'm familiar with.
I know that it's an even function, but that's about as far as I can get. If I try to split it over the subtraction, I get two non-converging integrals, so that wasn't much help either. I've been throwing lots of trig identities at it but nothing familiar has appeared yet.
Any help would be greatly appreciated.
Thank you.
calculus integration fourier-analysis improper-integrals fourier-transform
$endgroup$
This question had a bounty worth +150
reputation from Tyler6 that ended 1 hour ago. Grace period ends in 22 hours
The current answer(s) are out-of-date and require revision given recent changes.
Would like an answer that used Fourier Transforms as initially requested
$begingroup$
@Tyler6 : You can use $displaystyleintfrac{xcos x - sin x}{x^3}cosfrac{x}{2}dx = -frac{3}{16}left( intlimits_0^{x/2}frac{sin x}{x} + intlimits_0^{3x/2}frac{sin x}{x} right) -frac{cos^2frac{x}{2}}{x^2}left(frac{x}{2}cosfrac{x}{2} - sinfrac{x}{2}right) + C$ $~~$ Why Fourier Transforms ?
$endgroup$
– user90369
Mar 13 at 11:46
add a comment |
$begingroup$
I've been working through the following integral and am stumped:
$$int_0^infty frac{xcos x-sin x}{x^3}cosleft(frac{x}{2}right)mathrm dx$$
Given the questions in my class that have proceeded and followed this integral, I believe that this is some form of Fourier transform/integral. However, it doesn't look like any of the content surrounding it. That is, there is no $e^{-ikx}$ or $g(k)$ or anything else that I'm familiar with.
I know that it's an even function, but that's about as far as I can get. If I try to split it over the subtraction, I get two non-converging integrals, so that wasn't much help either. I've been throwing lots of trig identities at it but nothing familiar has appeared yet.
Any help would be greatly appreciated.
Thank you.
calculus integration fourier-analysis improper-integrals fourier-transform
$endgroup$
I've been working through the following integral and am stumped:
$$int_0^infty frac{xcos x-sin x}{x^3}cosleft(frac{x}{2}right)mathrm dx$$
Given the questions in my class that have proceeded and followed this integral, I believe that this is some form of Fourier transform/integral. However, it doesn't look like any of the content surrounding it. That is, there is no $e^{-ikx}$ or $g(k)$ or anything else that I'm familiar with.
I know that it's an even function, but that's about as far as I can get. If I try to split it over the subtraction, I get two non-converging integrals, so that wasn't much help either. I've been throwing lots of trig identities at it but nothing familiar has appeared yet.
Any help would be greatly appreciated.
Thank you.
calculus integration fourier-analysis improper-integrals fourier-transform
calculus integration fourier-analysis improper-integrals fourier-transform
edited Mar 13 at 18:47
mrtaurho
6,00551641
6,00551641
asked Oct 29 '16 at 5:07
Doe aDoe a
996
996
This question had a bounty worth +150
reputation from Tyler6 that ended 1 hour ago. Grace period ends in 22 hours
The current answer(s) are out-of-date and require revision given recent changes.
Would like an answer that used Fourier Transforms as initially requested
This question had a bounty worth +150
reputation from Tyler6 that ended 1 hour ago. Grace period ends in 22 hours
The current answer(s) are out-of-date and require revision given recent changes.
Would like an answer that used Fourier Transforms as initially requested
$begingroup$
@Tyler6 : You can use $displaystyleintfrac{xcos x - sin x}{x^3}cosfrac{x}{2}dx = -frac{3}{16}left( intlimits_0^{x/2}frac{sin x}{x} + intlimits_0^{3x/2}frac{sin x}{x} right) -frac{cos^2frac{x}{2}}{x^2}left(frac{x}{2}cosfrac{x}{2} - sinfrac{x}{2}right) + C$ $~~$ Why Fourier Transforms ?
$endgroup$
– user90369
Mar 13 at 11:46
add a comment |
$begingroup$
@Tyler6 : You can use $displaystyleintfrac{xcos x - sin x}{x^3}cosfrac{x}{2}dx = -frac{3}{16}left( intlimits_0^{x/2}frac{sin x}{x} + intlimits_0^{3x/2}frac{sin x}{x} right) -frac{cos^2frac{x}{2}}{x^2}left(frac{x}{2}cosfrac{x}{2} - sinfrac{x}{2}right) + C$ $~~$ Why Fourier Transforms ?
$endgroup$
– user90369
Mar 13 at 11:46
$begingroup$
@Tyler6 : You can use $displaystyleintfrac{xcos x - sin x}{x^3}cosfrac{x}{2}dx = -frac{3}{16}left( intlimits_0^{x/2}frac{sin x}{x} + intlimits_0^{3x/2}frac{sin x}{x} right) -frac{cos^2frac{x}{2}}{x^2}left(frac{x}{2}cosfrac{x}{2} - sinfrac{x}{2}right) + C$ $~~$ Why Fourier Transforms ?
$endgroup$
– user90369
Mar 13 at 11:46
$begingroup$
@Tyler6 : You can use $displaystyleintfrac{xcos x - sin x}{x^3}cosfrac{x}{2}dx = -frac{3}{16}left( intlimits_0^{x/2}frac{sin x}{x} + intlimits_0^{3x/2}frac{sin x}{x} right) -frac{cos^2frac{x}{2}}{x^2}left(frac{x}{2}cosfrac{x}{2} - sinfrac{x}{2}right) + C$ $~~$ Why Fourier Transforms ?
$endgroup$
– user90369
Mar 13 at 11:46
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
int_{0}^{infty}{xbracks{1 - 2sin^{2}pars{x/2}} - sinpars{x} over x^{3}},cospars{x over 2},dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{2xcospars{x/2} - 2xsinpars{x}sinpars{x/2} -
2sinpars{x}cospars{x/2} over x^{3}},,,dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{xcospars{x/2} + xcospars{3x/2} -
sinpars{3x/2} - sinpars{x/2} over x^{3}},,,dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & -
{1 over 4}int_{x = 0}^{x to infty}bracks{2x - sinpars{3x/2} - sinpars{x/2}},ddpars{1 over x^{2}}
end{align}
Integrating by parts the last integral:
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
\[5mm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{1 over 4}int_{x = 0}^{infty}{2 - 3cospars{3x/2}/2 - cospars{x/2}/2 over x^{2}},dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{3 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x +
{1 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
\[1cm] & =
-,{3 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
-,{1 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & =
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x =
-,{3 over 8}
int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
\[5mm] & =
-,{3 over 4}int_{0}^{infty}{sin^{2}pars{x/2} over x^{2}},dd x =
-,{3 over 8}
underbrace{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x}
_{ds{= {pi over 2}}} =
bbox[#ffe,10px,border:1px dotted navy]{ds{-,{3 over 16},pi}}
end{align}
By integrating by parts:
$ds{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x =
int_{0}^{infty}{sinpars{x} over x},dd x = {1 over 2},pi}$.
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
&int_0^inftyfrac{xcos(x)-sin(x)}{x^3}cosleft(frac{x}{2}right),mathrm{d}xtag{1}\
&=int_0^inftyfrac{xleft(cosleft(frac32xright)+cosleft(frac12xright)right)-left(sinleft(frac32xright)+sinleft(frac12xright)right)}{2x^3},mathrm{d}xtag{2}\
&=-int_0^inftyfrac{xleft(cosleft(tfrac32xright)+cosleft(tfrac12xright)right)-left(sinleft(tfrac32xright)+sinleft(tfrac12xright)right)}{4},mathrm{d}x^{-2}tag{3}\
&=int_0^inftyfrac{left(frac12cosleft(frac12xright)-frac12cosleft(frac32xright)right)-xleft(frac32sinleft(frac32xright)+frac12sinleft(frac12xright)right)}{4x^2},mathrm{d}xtag{4}\
&=int_0^inftyleft(frac{1-cosleft(frac32xright)}{8x^2}-frac{1-cosleft(frac12xright)}{8x^2}-frac{3sinleft(frac32xright)}{8x}-frac{sinleft(frac12xright)}{8x}right)mathrm{d}x
tag{5}\
&=int_0^inftyleft(frac{3(1-cos(x))}{16x^2}-frac{1-cos(x)}{16x^2}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{6}\
&=int_0^inftyleft(frac{3sin(x)}{16x}-frac{sin(x)}{16x}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{7}\
&=-frac38int_0^inftyfrac{sin(x)}{x},mathrm{d}xtag{8}\
&=-frac{3pi}{16}tag{9}
end{align}
$$
Explanation:
$(2)$: trigonometric product formulas
$(3)$: prepare to integrate by parts
$(4)$: integrate by parts
$(5)$: separate integrals
$(6)$: substitute $xmapsto2x$ and $xmapstofrac23x$
$(7)$: integrate by parts
$(8)$: combine
$(9)$: $int_0^inftyfrac{sin(x)}{x},mathrm{d}x=fracpi2$
$endgroup$
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
add a comment |
$begingroup$
We can also use contour integration.
$$ begin{align} &int_{0}^{infty} frac{x cos x - sin x}{x^{3}} , cos left(frac{x}{2} right) , dx \ &= frac{1}{2} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{x^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{2} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{(x- i epsilon)^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty}frac{(x+i)(e^{3ix/2}+e^{ix/2})}{(x- iepsilon)^{3}} , dx + frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{(x-i)(e^{-ix/2}+e^{-3ix/2})}{(x- iepsilon)^{3}} , dx \ &=frac{1}{8} lim_{epsilon to 0^{+}} 2 pi i , text{Res} left[frac{(z+i)(e^{3iz/2}+e^{iz/2})}{(z- i epsilon)^{3}} , iepsilon right] + 0 tag{1} \ &= frac{1}{8} lim_{epsilon to 0^{+}} , 2 pi i , frac{1}{2!} lim_{z to i epsilon}frac{d^{2}}{dz^{2}} , (z+i)(e^{3iz/2}+e^{iz/2}) \ &= frac{1}{8} lim_{epsilon to 0^{+}} frac{pi}{4} , e^{-3 epsilon/2} left((epsilon-3) e^{epsilon} + 9 epsilon -3 right) \ &= - frac{3 pi}{16} end{align}$$
$(1)$ The second integral vanishes since the function $ displaystyle frac{(z-i)(e^{-iz/2}+e^{-3iz/2})}{(z- iepsilon)^{3}} $ is analytic in the lower half-plane where $left| e^{iaz} right| le 1$ if $a le 0$.
$endgroup$
add a comment |
$begingroup$
Inspired by Felix Marin's calculation using integration by parts.
Observe
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3}cosfrac{x}{2} dx=& frac{1}{2}int^infty_{-infty} frac{xcos x-sin x}{x^3}e^{ix/2} dx\
=& frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right).
end{align}
Using integration by parts, we have
begin{align}
frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right)=& frac{1}{4} int^infty_{-infty}d([xcos x-sin x]e^{ix/2}) frac{1}{x^2}\
=& frac{-1}{4} int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx + frac{i}{8} int^infty_{-infty} frac{xcos x-sin x}{x^2}e^{ix/2} dx.
end{align}
Now, observe
begin{align}
int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx = mathcal{F}^{-1}left[operatorname{sincleft(frac{x}{pi}right)}right]left(frac{1}{2}right) = pi mathcal{F}^{-1}[operatorname{sinc}]left( frac{1}{2pi}right) = pi.
end{align}
Next, observe
begin{align}
int^infty_{-infty} frac{xcos x-sin x}{x^2} e^{ix/2} dx =& int^infty_{-infty} frac{d}{dx}left( frac{sin x}{x}right) e^{ix/2} dx\
=& -frac{i}{2}int^infty_{-infty}frac{sin x}{x} e^{ix/2} dx = -frac{ipi}{2}.
end{align}
Hence combining everything yields
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3} cos frac{x}{2} dx = -frac{pi}{4} + frac{pi}{16} = -frac{3pi}{16}.
end{align}
$endgroup$
add a comment |
$begingroup$
Integration by parts can be performed for the indefinite integral, using relations
$$dfrac{xcos x-sin x}{x^2} = left(dfrac{sin x}{x}right)',quad
sin^3 z =frac{3sin z-sin3z}4,quad cos^3z=frac{3cos
z+cos3z}4.$$
One can get
begin{align}
&int dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
= intdfrac1{4sin frac x2},mathrm dleft(dfrac{sin x}{x}right)^2 \[4pt]
&=dfrac1{4sin frac x2}left(dfrac{sin x}{x}right)^2
+intleft(dfrac{sin x}{x}right)^2dfrac{cosfrac x2}{8sin^2 frac x2},mathrm dx
=dfrac1{x^2}sinfrac x2,cos^2 frac x2
+dfrac12intdfrac{cos^3frac x2}{x^2},mathrm dx\[4pt]
&=dfrac1{x^2}sinfrac x2
-dfrac1{4x^2}left(3sinfrac x2-sin frac {3x}2right)
+dfrac18intdfrac{3cosfrac x2+cosfrac{3x}2}{x^2},mathrm dx\[4pt]
&=dfrac1{4x^2}left(sinfrac x2+sin frac {3x}2right)
-dfrac18intleft(3cosfrac x2+cosfrac{3x}2right),mathrm dfrac1x\[4pt]
&=dfrac1{8x^2}left(2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcos frac {3x}2right)
-dfrac3{16}intfrac1xleft(sinfrac x2+sinfrac{3x}2right),mathrm dx.
end{align}
Since
$$limlimits_{xto0}dfrac{2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcosfrac {3x}2}{8x^2}
= limlimits_{xto0}dfrac{2frac x2+2frac{3x}2-3x-x+O(x^3)}{8x^2}=0,$$
$$intlimits_{0}^{infty} dfrac{sin x}x,mathrm dx =fracpi2,$$
then
$$intlimits_{0}^{infty} dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
=-frac3{16}left(intlimits_{0}^{infty} dfrac{sinfrac x2}{frac x2},mathrm dfrac x2+intlimits_{0}^{infty} dfrac{sin frac{3x}2}{frac{3x}2},mathrm dfrac{3x}2right) = color{green}{mathbf{-frac{3pi}{16}}}.$$
$endgroup$
1
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
add a comment |
$begingroup$
I use the Laplace transform method instead of Fourier because the first one is the main tool for an electrician (who I am) and the Laplace transform is very similar to the Fourier transform.
By definition of the Laplace transform:
$mathcal{L}f(x)=int_{0}^{infty}e^{-sx}f(x)dx=F(s)$
$mathcal{L}g(x)=int_{0}^{infty}e^{-sx}g(x)dx=G(s)$
Now we use the following equation from the Laplace transform theory:
$$int_{0}^{infty}F(x)g(x)dx=int_{0}^{infty}G(x)f(x)dx$$
and apply it to the required integral.
We take
$F(x)=frac{1}{x^3}$
$g(x)=xcos xcos frac{x}{2}-sin xcos frac{x}{2}$
and get after taking the Laplace and inverse Laplace transforms
$f(x)=frac{x^2}{2}$
$G(x)=frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2}$
Placing these results into the relationship above we arrive at the next expression for the required integral:
$$I=frac{1}{2}int_{0}^{infty}x^2left [ frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2} right ]dx$$
$I=left [- frac{3}{16}arctan 2x- frac{3}{16}arctanfrac{2x}{3}+frac{9x}{4(4x^2+9)^2}+frac{x}{4(4x^2+1)^2}right ]_{0}^{infty}=$
$=- frac{3}{16}frac{pi}{2}- frac{3}{16}frac{pi}{2}=- frac{3pi}{16}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1989935%2fevaluating-the-improper-integral-int-0-infty-fracx-cos-x-sin-xx3-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
int_{0}^{infty}{xbracks{1 - 2sin^{2}pars{x/2}} - sinpars{x} over x^{3}},cospars{x over 2},dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{2xcospars{x/2} - 2xsinpars{x}sinpars{x/2} -
2sinpars{x}cospars{x/2} over x^{3}},,,dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{xcospars{x/2} + xcospars{3x/2} -
sinpars{3x/2} - sinpars{x/2} over x^{3}},,,dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & -
{1 over 4}int_{x = 0}^{x to infty}bracks{2x - sinpars{3x/2} - sinpars{x/2}},ddpars{1 over x^{2}}
end{align}
Integrating by parts the last integral:
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
\[5mm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{1 over 4}int_{x = 0}^{infty}{2 - 3cospars{3x/2}/2 - cospars{x/2}/2 over x^{2}},dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{3 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x +
{1 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
\[1cm] & =
-,{3 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
-,{1 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & =
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x =
-,{3 over 8}
int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
\[5mm] & =
-,{3 over 4}int_{0}^{infty}{sin^{2}pars{x/2} over x^{2}},dd x =
-,{3 over 8}
underbrace{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x}
_{ds{= {pi over 2}}} =
bbox[#ffe,10px,border:1px dotted navy]{ds{-,{3 over 16},pi}}
end{align}
By integrating by parts:
$ds{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x =
int_{0}^{infty}{sinpars{x} over x},dd x = {1 over 2},pi}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
int_{0}^{infty}{xbracks{1 - 2sin^{2}pars{x/2}} - sinpars{x} over x^{3}},cospars{x over 2},dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{2xcospars{x/2} - 2xsinpars{x}sinpars{x/2} -
2sinpars{x}cospars{x/2} over x^{3}},,,dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{xcospars{x/2} + xcospars{3x/2} -
sinpars{3x/2} - sinpars{x/2} over x^{3}},,,dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & -
{1 over 4}int_{x = 0}^{x to infty}bracks{2x - sinpars{3x/2} - sinpars{x/2}},ddpars{1 over x^{2}}
end{align}
Integrating by parts the last integral:
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
\[5mm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{1 over 4}int_{x = 0}^{infty}{2 - 3cospars{3x/2}/2 - cospars{x/2}/2 over x^{2}},dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{3 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x +
{1 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
\[1cm] & =
-,{3 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
-,{1 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & =
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x =
-,{3 over 8}
int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
\[5mm] & =
-,{3 over 4}int_{0}^{infty}{sin^{2}pars{x/2} over x^{2}},dd x =
-,{3 over 8}
underbrace{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x}
_{ds{= {pi over 2}}} =
bbox[#ffe,10px,border:1px dotted navy]{ds{-,{3 over 16},pi}}
end{align}
By integrating by parts:
$ds{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x =
int_{0}^{infty}{sinpars{x} over x},dd x = {1 over 2},pi}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
int_{0}^{infty}{xbracks{1 - 2sin^{2}pars{x/2}} - sinpars{x} over x^{3}},cospars{x over 2},dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{2xcospars{x/2} - 2xsinpars{x}sinpars{x/2} -
2sinpars{x}cospars{x/2} over x^{3}},,,dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{xcospars{x/2} + xcospars{3x/2} -
sinpars{3x/2} - sinpars{x/2} over x^{3}},,,dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & -
{1 over 4}int_{x = 0}^{x to infty}bracks{2x - sinpars{3x/2} - sinpars{x/2}},ddpars{1 over x^{2}}
end{align}
Integrating by parts the last integral:
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
\[5mm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{1 over 4}int_{x = 0}^{infty}{2 - 3cospars{3x/2}/2 - cospars{x/2}/2 over x^{2}},dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{3 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x +
{1 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
\[1cm] & =
-,{3 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
-,{1 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & =
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x =
-,{3 over 8}
int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
\[5mm] & =
-,{3 over 4}int_{0}^{infty}{sin^{2}pars{x/2} over x^{2}},dd x =
-,{3 over 8}
underbrace{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x}
_{ds{= {pi over 2}}} =
bbox[#ffe,10px,border:1px dotted navy]{ds{-,{3 over 16},pi}}
end{align}
By integrating by parts:
$ds{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x =
int_{0}^{infty}{sinpars{x} over x},dd x = {1 over 2},pi}$.
$endgroup$
$newcommand{bbx}[1]{,bbox[8px,border:1px groove navy]{{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2][]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
int_{0}^{infty}{xbracks{1 - 2sin^{2}pars{x/2}} - sinpars{x} over x^{3}},cospars{x over 2},dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{2xcospars{x/2} - 2xsinpars{x}sinpars{x/2} -
2sinpars{x}cospars{x/2} over x^{3}},,,dd x
\[5mm] & =
{1 over 2}int_{0}^{infty}{xcospars{x/2} + xcospars{3x/2} -
sinpars{3x/2} - sinpars{x/2} over x^{3}},,,dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & -
{1 over 4}int_{x = 0}^{x to infty}bracks{2x - sinpars{3x/2} - sinpars{x/2}},ddpars{1 over x^{2}}
end{align}
Integrating by parts the last integral:
begin{align}
&int_{0}^{infty}{xcospars{x} - sinpars{x} over x^{3}},
cospars{x over 2},dd x =
\[5mm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{1 over 4}int_{x = 0}^{infty}{2 - 3cospars{3x/2}/2 - cospars{x/2}/2 over x^{2}},dd x
\[1cm] & =
-,{1 over 2}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x -
{1 over 2}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & +
{3 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x +
{1 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
\[1cm] & =
-,{3 over 8}int_{0}^{infty}{1 - cospars{x/2} over x^{2}},dd x
-,{1 over 8}int_{0}^{infty}{1 - cospars{3x/2} over x^{2}},dd x
\[5mm] & =
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
-,{3 over 16}int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x =
-,{3 over 8}
int_{0}^{infty}{1 - cospars{x} over x^{2}},dd x
\[5mm] & =
-,{3 over 4}int_{0}^{infty}{sin^{2}pars{x/2} over x^{2}},dd x =
-,{3 over 8}
underbrace{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x}
_{ds{= {pi over 2}}} =
bbox[#ffe,10px,border:1px dotted navy]{ds{-,{3 over 16},pi}}
end{align}
By integrating by parts:
$ds{int_{0}^{infty}{sin^{2}pars{x} over x^{2}},dd x =
int_{0}^{infty}{sinpars{x} over x},dd x = {1 over 2},pi}$.
answered Oct 29 '16 at 6:42
Felix MarinFelix Marin
68.6k7109145
68.6k7109145
add a comment |
add a comment |
$begingroup$
$$
begin{align}
&int_0^inftyfrac{xcos(x)-sin(x)}{x^3}cosleft(frac{x}{2}right),mathrm{d}xtag{1}\
&=int_0^inftyfrac{xleft(cosleft(frac32xright)+cosleft(frac12xright)right)-left(sinleft(frac32xright)+sinleft(frac12xright)right)}{2x^3},mathrm{d}xtag{2}\
&=-int_0^inftyfrac{xleft(cosleft(tfrac32xright)+cosleft(tfrac12xright)right)-left(sinleft(tfrac32xright)+sinleft(tfrac12xright)right)}{4},mathrm{d}x^{-2}tag{3}\
&=int_0^inftyfrac{left(frac12cosleft(frac12xright)-frac12cosleft(frac32xright)right)-xleft(frac32sinleft(frac32xright)+frac12sinleft(frac12xright)right)}{4x^2},mathrm{d}xtag{4}\
&=int_0^inftyleft(frac{1-cosleft(frac32xright)}{8x^2}-frac{1-cosleft(frac12xright)}{8x^2}-frac{3sinleft(frac32xright)}{8x}-frac{sinleft(frac12xright)}{8x}right)mathrm{d}x
tag{5}\
&=int_0^inftyleft(frac{3(1-cos(x))}{16x^2}-frac{1-cos(x)}{16x^2}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{6}\
&=int_0^inftyleft(frac{3sin(x)}{16x}-frac{sin(x)}{16x}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{7}\
&=-frac38int_0^inftyfrac{sin(x)}{x},mathrm{d}xtag{8}\
&=-frac{3pi}{16}tag{9}
end{align}
$$
Explanation:
$(2)$: trigonometric product formulas
$(3)$: prepare to integrate by parts
$(4)$: integrate by parts
$(5)$: separate integrals
$(6)$: substitute $xmapsto2x$ and $xmapstofrac23x$
$(7)$: integrate by parts
$(8)$: combine
$(9)$: $int_0^inftyfrac{sin(x)}{x},mathrm{d}x=fracpi2$
$endgroup$
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
add a comment |
$begingroup$
$$
begin{align}
&int_0^inftyfrac{xcos(x)-sin(x)}{x^3}cosleft(frac{x}{2}right),mathrm{d}xtag{1}\
&=int_0^inftyfrac{xleft(cosleft(frac32xright)+cosleft(frac12xright)right)-left(sinleft(frac32xright)+sinleft(frac12xright)right)}{2x^3},mathrm{d}xtag{2}\
&=-int_0^inftyfrac{xleft(cosleft(tfrac32xright)+cosleft(tfrac12xright)right)-left(sinleft(tfrac32xright)+sinleft(tfrac12xright)right)}{4},mathrm{d}x^{-2}tag{3}\
&=int_0^inftyfrac{left(frac12cosleft(frac12xright)-frac12cosleft(frac32xright)right)-xleft(frac32sinleft(frac32xright)+frac12sinleft(frac12xright)right)}{4x^2},mathrm{d}xtag{4}\
&=int_0^inftyleft(frac{1-cosleft(frac32xright)}{8x^2}-frac{1-cosleft(frac12xright)}{8x^2}-frac{3sinleft(frac32xright)}{8x}-frac{sinleft(frac12xright)}{8x}right)mathrm{d}x
tag{5}\
&=int_0^inftyleft(frac{3(1-cos(x))}{16x^2}-frac{1-cos(x)}{16x^2}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{6}\
&=int_0^inftyleft(frac{3sin(x)}{16x}-frac{sin(x)}{16x}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{7}\
&=-frac38int_0^inftyfrac{sin(x)}{x},mathrm{d}xtag{8}\
&=-frac{3pi}{16}tag{9}
end{align}
$$
Explanation:
$(2)$: trigonometric product formulas
$(3)$: prepare to integrate by parts
$(4)$: integrate by parts
$(5)$: separate integrals
$(6)$: substitute $xmapsto2x$ and $xmapstofrac23x$
$(7)$: integrate by parts
$(8)$: combine
$(9)$: $int_0^inftyfrac{sin(x)}{x},mathrm{d}x=fracpi2$
$endgroup$
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
add a comment |
$begingroup$
$$
begin{align}
&int_0^inftyfrac{xcos(x)-sin(x)}{x^3}cosleft(frac{x}{2}right),mathrm{d}xtag{1}\
&=int_0^inftyfrac{xleft(cosleft(frac32xright)+cosleft(frac12xright)right)-left(sinleft(frac32xright)+sinleft(frac12xright)right)}{2x^3},mathrm{d}xtag{2}\
&=-int_0^inftyfrac{xleft(cosleft(tfrac32xright)+cosleft(tfrac12xright)right)-left(sinleft(tfrac32xright)+sinleft(tfrac12xright)right)}{4},mathrm{d}x^{-2}tag{3}\
&=int_0^inftyfrac{left(frac12cosleft(frac12xright)-frac12cosleft(frac32xright)right)-xleft(frac32sinleft(frac32xright)+frac12sinleft(frac12xright)right)}{4x^2},mathrm{d}xtag{4}\
&=int_0^inftyleft(frac{1-cosleft(frac32xright)}{8x^2}-frac{1-cosleft(frac12xright)}{8x^2}-frac{3sinleft(frac32xright)}{8x}-frac{sinleft(frac12xright)}{8x}right)mathrm{d}x
tag{5}\
&=int_0^inftyleft(frac{3(1-cos(x))}{16x^2}-frac{1-cos(x)}{16x^2}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{6}\
&=int_0^inftyleft(frac{3sin(x)}{16x}-frac{sin(x)}{16x}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{7}\
&=-frac38int_0^inftyfrac{sin(x)}{x},mathrm{d}xtag{8}\
&=-frac{3pi}{16}tag{9}
end{align}
$$
Explanation:
$(2)$: trigonometric product formulas
$(3)$: prepare to integrate by parts
$(4)$: integrate by parts
$(5)$: separate integrals
$(6)$: substitute $xmapsto2x$ and $xmapstofrac23x$
$(7)$: integrate by parts
$(8)$: combine
$(9)$: $int_0^inftyfrac{sin(x)}{x},mathrm{d}x=fracpi2$
$endgroup$
$$
begin{align}
&int_0^inftyfrac{xcos(x)-sin(x)}{x^3}cosleft(frac{x}{2}right),mathrm{d}xtag{1}\
&=int_0^inftyfrac{xleft(cosleft(frac32xright)+cosleft(frac12xright)right)-left(sinleft(frac32xright)+sinleft(frac12xright)right)}{2x^3},mathrm{d}xtag{2}\
&=-int_0^inftyfrac{xleft(cosleft(tfrac32xright)+cosleft(tfrac12xright)right)-left(sinleft(tfrac32xright)+sinleft(tfrac12xright)right)}{4},mathrm{d}x^{-2}tag{3}\
&=int_0^inftyfrac{left(frac12cosleft(frac12xright)-frac12cosleft(frac32xright)right)-xleft(frac32sinleft(frac32xright)+frac12sinleft(frac12xright)right)}{4x^2},mathrm{d}xtag{4}\
&=int_0^inftyleft(frac{1-cosleft(frac32xright)}{8x^2}-frac{1-cosleft(frac12xright)}{8x^2}-frac{3sinleft(frac32xright)}{8x}-frac{sinleft(frac12xright)}{8x}right)mathrm{d}x
tag{5}\
&=int_0^inftyleft(frac{3(1-cos(x))}{16x^2}-frac{1-cos(x)}{16x^2}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{6}\
&=int_0^inftyleft(frac{3sin(x)}{16x}-frac{sin(x)}{16x}-frac{3sin(x)}{8x}-frac{sin(x)}{8x}right)mathrm{d}x
tag{7}\
&=-frac38int_0^inftyfrac{sin(x)}{x},mathrm{d}xtag{8}\
&=-frac{3pi}{16}tag{9}
end{align}
$$
Explanation:
$(2)$: trigonometric product formulas
$(3)$: prepare to integrate by parts
$(4)$: integrate by parts
$(5)$: separate integrals
$(6)$: substitute $xmapsto2x$ and $xmapstofrac23x$
$(7)$: integrate by parts
$(8)$: combine
$(9)$: $int_0^inftyfrac{sin(x)}{x},mathrm{d}x=fracpi2$
edited Oct 29 '16 at 14:39
answered Oct 29 '16 at 13:50
robjohn♦robjohn
269k27311638
269k27311638
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
add a comment |
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
$begingroup$
I see that this may be similar to Felix Marin's answer, but I think the path may be different enough, and possibly simpler, to warrant leaving it.
$endgroup$
– robjohn♦
Oct 29 '16 at 13:53
add a comment |
$begingroup$
We can also use contour integration.
$$ begin{align} &int_{0}^{infty} frac{x cos x - sin x}{x^{3}} , cos left(frac{x}{2} right) , dx \ &= frac{1}{2} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{x^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{2} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{(x- i epsilon)^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty}frac{(x+i)(e^{3ix/2}+e^{ix/2})}{(x- iepsilon)^{3}} , dx + frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{(x-i)(e^{-ix/2}+e^{-3ix/2})}{(x- iepsilon)^{3}} , dx \ &=frac{1}{8} lim_{epsilon to 0^{+}} 2 pi i , text{Res} left[frac{(z+i)(e^{3iz/2}+e^{iz/2})}{(z- i epsilon)^{3}} , iepsilon right] + 0 tag{1} \ &= frac{1}{8} lim_{epsilon to 0^{+}} , 2 pi i , frac{1}{2!} lim_{z to i epsilon}frac{d^{2}}{dz^{2}} , (z+i)(e^{3iz/2}+e^{iz/2}) \ &= frac{1}{8} lim_{epsilon to 0^{+}} frac{pi}{4} , e^{-3 epsilon/2} left((epsilon-3) e^{epsilon} + 9 epsilon -3 right) \ &= - frac{3 pi}{16} end{align}$$
$(1)$ The second integral vanishes since the function $ displaystyle frac{(z-i)(e^{-iz/2}+e^{-3iz/2})}{(z- iepsilon)^{3}} $ is analytic in the lower half-plane where $left| e^{iaz} right| le 1$ if $a le 0$.
$endgroup$
add a comment |
$begingroup$
We can also use contour integration.
$$ begin{align} &int_{0}^{infty} frac{x cos x - sin x}{x^{3}} , cos left(frac{x}{2} right) , dx \ &= frac{1}{2} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{x^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{2} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{(x- i epsilon)^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty}frac{(x+i)(e^{3ix/2}+e^{ix/2})}{(x- iepsilon)^{3}} , dx + frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{(x-i)(e^{-ix/2}+e^{-3ix/2})}{(x- iepsilon)^{3}} , dx \ &=frac{1}{8} lim_{epsilon to 0^{+}} 2 pi i , text{Res} left[frac{(z+i)(e^{3iz/2}+e^{iz/2})}{(z- i epsilon)^{3}} , iepsilon right] + 0 tag{1} \ &= frac{1}{8} lim_{epsilon to 0^{+}} , 2 pi i , frac{1}{2!} lim_{z to i epsilon}frac{d^{2}}{dz^{2}} , (z+i)(e^{3iz/2}+e^{iz/2}) \ &= frac{1}{8} lim_{epsilon to 0^{+}} frac{pi}{4} , e^{-3 epsilon/2} left((epsilon-3) e^{epsilon} + 9 epsilon -3 right) \ &= - frac{3 pi}{16} end{align}$$
$(1)$ The second integral vanishes since the function $ displaystyle frac{(z-i)(e^{-iz/2}+e^{-3iz/2})}{(z- iepsilon)^{3}} $ is analytic in the lower half-plane where $left| e^{iaz} right| le 1$ if $a le 0$.
$endgroup$
add a comment |
$begingroup$
We can also use contour integration.
$$ begin{align} &int_{0}^{infty} frac{x cos x - sin x}{x^{3}} , cos left(frac{x}{2} right) , dx \ &= frac{1}{2} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{x^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{2} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{(x- i epsilon)^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty}frac{(x+i)(e^{3ix/2}+e^{ix/2})}{(x- iepsilon)^{3}} , dx + frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{(x-i)(e^{-ix/2}+e^{-3ix/2})}{(x- iepsilon)^{3}} , dx \ &=frac{1}{8} lim_{epsilon to 0^{+}} 2 pi i , text{Res} left[frac{(z+i)(e^{3iz/2}+e^{iz/2})}{(z- i epsilon)^{3}} , iepsilon right] + 0 tag{1} \ &= frac{1}{8} lim_{epsilon to 0^{+}} , 2 pi i , frac{1}{2!} lim_{z to i epsilon}frac{d^{2}}{dz^{2}} , (z+i)(e^{3iz/2}+e^{iz/2}) \ &= frac{1}{8} lim_{epsilon to 0^{+}} frac{pi}{4} , e^{-3 epsilon/2} left((epsilon-3) e^{epsilon} + 9 epsilon -3 right) \ &= - frac{3 pi}{16} end{align}$$
$(1)$ The second integral vanishes since the function $ displaystyle frac{(z-i)(e^{-iz/2}+e^{-3iz/2})}{(z- iepsilon)^{3}} $ is analytic in the lower half-plane where $left| e^{iaz} right| le 1$ if $a le 0$.
$endgroup$
We can also use contour integration.
$$ begin{align} &int_{0}^{infty} frac{x cos x - sin x}{x^{3}} , cos left(frac{x}{2} right) , dx \ &= frac{1}{2} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{x^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{2} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{x left(frac{e^{ix}+e^{-ix}}{2} right) -frac{e^{ix}-e^{-ix}}{2i}}{(x- i epsilon)^{3}} left(frac{e^{ix/2}+e^{-ix/2}}{2} right) , dx \ &= frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty}frac{(x+i)(e^{3ix/2}+e^{ix/2})}{(x- iepsilon)^{3}} , dx + frac{1}{8} lim_{epsilon to 0^{+}} int_{-infty}^{infty} frac{(x-i)(e^{-ix/2}+e^{-3ix/2})}{(x- iepsilon)^{3}} , dx \ &=frac{1}{8} lim_{epsilon to 0^{+}} 2 pi i , text{Res} left[frac{(z+i)(e^{3iz/2}+e^{iz/2})}{(z- i epsilon)^{3}} , iepsilon right] + 0 tag{1} \ &= frac{1}{8} lim_{epsilon to 0^{+}} , 2 pi i , frac{1}{2!} lim_{z to i epsilon}frac{d^{2}}{dz^{2}} , (z+i)(e^{3iz/2}+e^{iz/2}) \ &= frac{1}{8} lim_{epsilon to 0^{+}} frac{pi}{4} , e^{-3 epsilon/2} left((epsilon-3) e^{epsilon} + 9 epsilon -3 right) \ &= - frac{3 pi}{16} end{align}$$
$(1)$ The second integral vanishes since the function $ displaystyle frac{(z-i)(e^{-iz/2}+e^{-3iz/2})}{(z- iepsilon)^{3}} $ is analytic in the lower half-plane where $left| e^{iaz} right| le 1$ if $a le 0$.
edited Oct 29 '16 at 13:15
answered Oct 29 '16 at 8:05
Random VariableRandom Variable
25.6k172138
25.6k172138
add a comment |
add a comment |
$begingroup$
Inspired by Felix Marin's calculation using integration by parts.
Observe
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3}cosfrac{x}{2} dx=& frac{1}{2}int^infty_{-infty} frac{xcos x-sin x}{x^3}e^{ix/2} dx\
=& frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right).
end{align}
Using integration by parts, we have
begin{align}
frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right)=& frac{1}{4} int^infty_{-infty}d([xcos x-sin x]e^{ix/2}) frac{1}{x^2}\
=& frac{-1}{4} int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx + frac{i}{8} int^infty_{-infty} frac{xcos x-sin x}{x^2}e^{ix/2} dx.
end{align}
Now, observe
begin{align}
int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx = mathcal{F}^{-1}left[operatorname{sincleft(frac{x}{pi}right)}right]left(frac{1}{2}right) = pi mathcal{F}^{-1}[operatorname{sinc}]left( frac{1}{2pi}right) = pi.
end{align}
Next, observe
begin{align}
int^infty_{-infty} frac{xcos x-sin x}{x^2} e^{ix/2} dx =& int^infty_{-infty} frac{d}{dx}left( frac{sin x}{x}right) e^{ix/2} dx\
=& -frac{i}{2}int^infty_{-infty}frac{sin x}{x} e^{ix/2} dx = -frac{ipi}{2}.
end{align}
Hence combining everything yields
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3} cos frac{x}{2} dx = -frac{pi}{4} + frac{pi}{16} = -frac{3pi}{16}.
end{align}
$endgroup$
add a comment |
$begingroup$
Inspired by Felix Marin's calculation using integration by parts.
Observe
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3}cosfrac{x}{2} dx=& frac{1}{2}int^infty_{-infty} frac{xcos x-sin x}{x^3}e^{ix/2} dx\
=& frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right).
end{align}
Using integration by parts, we have
begin{align}
frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right)=& frac{1}{4} int^infty_{-infty}d([xcos x-sin x]e^{ix/2}) frac{1}{x^2}\
=& frac{-1}{4} int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx + frac{i}{8} int^infty_{-infty} frac{xcos x-sin x}{x^2}e^{ix/2} dx.
end{align}
Now, observe
begin{align}
int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx = mathcal{F}^{-1}left[operatorname{sincleft(frac{x}{pi}right)}right]left(frac{1}{2}right) = pi mathcal{F}^{-1}[operatorname{sinc}]left( frac{1}{2pi}right) = pi.
end{align}
Next, observe
begin{align}
int^infty_{-infty} frac{xcos x-sin x}{x^2} e^{ix/2} dx =& int^infty_{-infty} frac{d}{dx}left( frac{sin x}{x}right) e^{ix/2} dx\
=& -frac{i}{2}int^infty_{-infty}frac{sin x}{x} e^{ix/2} dx = -frac{ipi}{2}.
end{align}
Hence combining everything yields
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3} cos frac{x}{2} dx = -frac{pi}{4} + frac{pi}{16} = -frac{3pi}{16}.
end{align}
$endgroup$
add a comment |
$begingroup$
Inspired by Felix Marin's calculation using integration by parts.
Observe
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3}cosfrac{x}{2} dx=& frac{1}{2}int^infty_{-infty} frac{xcos x-sin x}{x^3}e^{ix/2} dx\
=& frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right).
end{align}
Using integration by parts, we have
begin{align}
frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right)=& frac{1}{4} int^infty_{-infty}d([xcos x-sin x]e^{ix/2}) frac{1}{x^2}\
=& frac{-1}{4} int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx + frac{i}{8} int^infty_{-infty} frac{xcos x-sin x}{x^2}e^{ix/2} dx.
end{align}
Now, observe
begin{align}
int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx = mathcal{F}^{-1}left[operatorname{sincleft(frac{x}{pi}right)}right]left(frac{1}{2}right) = pi mathcal{F}^{-1}[operatorname{sinc}]left( frac{1}{2pi}right) = pi.
end{align}
Next, observe
begin{align}
int^infty_{-infty} frac{xcos x-sin x}{x^2} e^{ix/2} dx =& int^infty_{-infty} frac{d}{dx}left( frac{sin x}{x}right) e^{ix/2} dx\
=& -frac{i}{2}int^infty_{-infty}frac{sin x}{x} e^{ix/2} dx = -frac{ipi}{2}.
end{align}
Hence combining everything yields
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3} cos frac{x}{2} dx = -frac{pi}{4} + frac{pi}{16} = -frac{3pi}{16}.
end{align}
$endgroup$
Inspired by Felix Marin's calculation using integration by parts.
Observe
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3}cosfrac{x}{2} dx=& frac{1}{2}int^infty_{-infty} frac{xcos x-sin x}{x^3}e^{ix/2} dx\
=& frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right).
end{align}
Using integration by parts, we have
begin{align}
frac{-1}{4} int^infty_{-infty} [xcos x-sin x] e^{ix/2} dleft(frac{1}{x^2} right)=& frac{1}{4} int^infty_{-infty}d([xcos x-sin x]e^{ix/2}) frac{1}{x^2}\
=& frac{-1}{4} int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx + frac{i}{8} int^infty_{-infty} frac{xcos x-sin x}{x^2}e^{ix/2} dx.
end{align}
Now, observe
begin{align}
int^infty_{-infty}frac{sin x}{x}e^{ix/2} dx = mathcal{F}^{-1}left[operatorname{sincleft(frac{x}{pi}right)}right]left(frac{1}{2}right) = pi mathcal{F}^{-1}[operatorname{sinc}]left( frac{1}{2pi}right) = pi.
end{align}
Next, observe
begin{align}
int^infty_{-infty} frac{xcos x-sin x}{x^2} e^{ix/2} dx =& int^infty_{-infty} frac{d}{dx}left( frac{sin x}{x}right) e^{ix/2} dx\
=& -frac{i}{2}int^infty_{-infty}frac{sin x}{x} e^{ix/2} dx = -frac{ipi}{2}.
end{align}
Hence combining everything yields
begin{align}
int^infty_0 frac{xcos x-sin x}{x^3} cos frac{x}{2} dx = -frac{pi}{4} + frac{pi}{16} = -frac{3pi}{16}.
end{align}
edited Oct 29 '16 at 7:32
answered Oct 29 '16 at 7:24
Jacky ChongJacky Chong
19.3k21129
19.3k21129
add a comment |
add a comment |
$begingroup$
Integration by parts can be performed for the indefinite integral, using relations
$$dfrac{xcos x-sin x}{x^2} = left(dfrac{sin x}{x}right)',quad
sin^3 z =frac{3sin z-sin3z}4,quad cos^3z=frac{3cos
z+cos3z}4.$$
One can get
begin{align}
&int dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
= intdfrac1{4sin frac x2},mathrm dleft(dfrac{sin x}{x}right)^2 \[4pt]
&=dfrac1{4sin frac x2}left(dfrac{sin x}{x}right)^2
+intleft(dfrac{sin x}{x}right)^2dfrac{cosfrac x2}{8sin^2 frac x2},mathrm dx
=dfrac1{x^2}sinfrac x2,cos^2 frac x2
+dfrac12intdfrac{cos^3frac x2}{x^2},mathrm dx\[4pt]
&=dfrac1{x^2}sinfrac x2
-dfrac1{4x^2}left(3sinfrac x2-sin frac {3x}2right)
+dfrac18intdfrac{3cosfrac x2+cosfrac{3x}2}{x^2},mathrm dx\[4pt]
&=dfrac1{4x^2}left(sinfrac x2+sin frac {3x}2right)
-dfrac18intleft(3cosfrac x2+cosfrac{3x}2right),mathrm dfrac1x\[4pt]
&=dfrac1{8x^2}left(2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcos frac {3x}2right)
-dfrac3{16}intfrac1xleft(sinfrac x2+sinfrac{3x}2right),mathrm dx.
end{align}
Since
$$limlimits_{xto0}dfrac{2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcosfrac {3x}2}{8x^2}
= limlimits_{xto0}dfrac{2frac x2+2frac{3x}2-3x-x+O(x^3)}{8x^2}=0,$$
$$intlimits_{0}^{infty} dfrac{sin x}x,mathrm dx =fracpi2,$$
then
$$intlimits_{0}^{infty} dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
=-frac3{16}left(intlimits_{0}^{infty} dfrac{sinfrac x2}{frac x2},mathrm dfrac x2+intlimits_{0}^{infty} dfrac{sin frac{3x}2}{frac{3x}2},mathrm dfrac{3x}2right) = color{green}{mathbf{-frac{3pi}{16}}}.$$
$endgroup$
1
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
add a comment |
$begingroup$
Integration by parts can be performed for the indefinite integral, using relations
$$dfrac{xcos x-sin x}{x^2} = left(dfrac{sin x}{x}right)',quad
sin^3 z =frac{3sin z-sin3z}4,quad cos^3z=frac{3cos
z+cos3z}4.$$
One can get
begin{align}
&int dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
= intdfrac1{4sin frac x2},mathrm dleft(dfrac{sin x}{x}right)^2 \[4pt]
&=dfrac1{4sin frac x2}left(dfrac{sin x}{x}right)^2
+intleft(dfrac{sin x}{x}right)^2dfrac{cosfrac x2}{8sin^2 frac x2},mathrm dx
=dfrac1{x^2}sinfrac x2,cos^2 frac x2
+dfrac12intdfrac{cos^3frac x2}{x^2},mathrm dx\[4pt]
&=dfrac1{x^2}sinfrac x2
-dfrac1{4x^2}left(3sinfrac x2-sin frac {3x}2right)
+dfrac18intdfrac{3cosfrac x2+cosfrac{3x}2}{x^2},mathrm dx\[4pt]
&=dfrac1{4x^2}left(sinfrac x2+sin frac {3x}2right)
-dfrac18intleft(3cosfrac x2+cosfrac{3x}2right),mathrm dfrac1x\[4pt]
&=dfrac1{8x^2}left(2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcos frac {3x}2right)
-dfrac3{16}intfrac1xleft(sinfrac x2+sinfrac{3x}2right),mathrm dx.
end{align}
Since
$$limlimits_{xto0}dfrac{2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcosfrac {3x}2}{8x^2}
= limlimits_{xto0}dfrac{2frac x2+2frac{3x}2-3x-x+O(x^3)}{8x^2}=0,$$
$$intlimits_{0}^{infty} dfrac{sin x}x,mathrm dx =fracpi2,$$
then
$$intlimits_{0}^{infty} dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
=-frac3{16}left(intlimits_{0}^{infty} dfrac{sinfrac x2}{frac x2},mathrm dfrac x2+intlimits_{0}^{infty} dfrac{sin frac{3x}2}{frac{3x}2},mathrm dfrac{3x}2right) = color{green}{mathbf{-frac{3pi}{16}}}.$$
$endgroup$
1
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
add a comment |
$begingroup$
Integration by parts can be performed for the indefinite integral, using relations
$$dfrac{xcos x-sin x}{x^2} = left(dfrac{sin x}{x}right)',quad
sin^3 z =frac{3sin z-sin3z}4,quad cos^3z=frac{3cos
z+cos3z}4.$$
One can get
begin{align}
&int dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
= intdfrac1{4sin frac x2},mathrm dleft(dfrac{sin x}{x}right)^2 \[4pt]
&=dfrac1{4sin frac x2}left(dfrac{sin x}{x}right)^2
+intleft(dfrac{sin x}{x}right)^2dfrac{cosfrac x2}{8sin^2 frac x2},mathrm dx
=dfrac1{x^2}sinfrac x2,cos^2 frac x2
+dfrac12intdfrac{cos^3frac x2}{x^2},mathrm dx\[4pt]
&=dfrac1{x^2}sinfrac x2
-dfrac1{4x^2}left(3sinfrac x2-sin frac {3x}2right)
+dfrac18intdfrac{3cosfrac x2+cosfrac{3x}2}{x^2},mathrm dx\[4pt]
&=dfrac1{4x^2}left(sinfrac x2+sin frac {3x}2right)
-dfrac18intleft(3cosfrac x2+cosfrac{3x}2right),mathrm dfrac1x\[4pt]
&=dfrac1{8x^2}left(2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcos frac {3x}2right)
-dfrac3{16}intfrac1xleft(sinfrac x2+sinfrac{3x}2right),mathrm dx.
end{align}
Since
$$limlimits_{xto0}dfrac{2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcosfrac {3x}2}{8x^2}
= limlimits_{xto0}dfrac{2frac x2+2frac{3x}2-3x-x+O(x^3)}{8x^2}=0,$$
$$intlimits_{0}^{infty} dfrac{sin x}x,mathrm dx =fracpi2,$$
then
$$intlimits_{0}^{infty} dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
=-frac3{16}left(intlimits_{0}^{infty} dfrac{sinfrac x2}{frac x2},mathrm dfrac x2+intlimits_{0}^{infty} dfrac{sin frac{3x}2}{frac{3x}2},mathrm dfrac{3x}2right) = color{green}{mathbf{-frac{3pi}{16}}}.$$
$endgroup$
Integration by parts can be performed for the indefinite integral, using relations
$$dfrac{xcos x-sin x}{x^2} = left(dfrac{sin x}{x}right)',quad
sin^3 z =frac{3sin z-sin3z}4,quad cos^3z=frac{3cos
z+cos3z}4.$$
One can get
begin{align}
&int dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
= intdfrac1{4sin frac x2},mathrm dleft(dfrac{sin x}{x}right)^2 \[4pt]
&=dfrac1{4sin frac x2}left(dfrac{sin x}{x}right)^2
+intleft(dfrac{sin x}{x}right)^2dfrac{cosfrac x2}{8sin^2 frac x2},mathrm dx
=dfrac1{x^2}sinfrac x2,cos^2 frac x2
+dfrac12intdfrac{cos^3frac x2}{x^2},mathrm dx\[4pt]
&=dfrac1{x^2}sinfrac x2
-dfrac1{4x^2}left(3sinfrac x2-sin frac {3x}2right)
+dfrac18intdfrac{3cosfrac x2+cosfrac{3x}2}{x^2},mathrm dx\[4pt]
&=dfrac1{4x^2}left(sinfrac x2+sin frac {3x}2right)
-dfrac18intleft(3cosfrac x2+cosfrac{3x}2right),mathrm dfrac1x\[4pt]
&=dfrac1{8x^2}left(2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcos frac {3x}2right)
-dfrac3{16}intfrac1xleft(sinfrac x2+sinfrac{3x}2right),mathrm dx.
end{align}
Since
$$limlimits_{xto0}dfrac{2sinfrac x2+2sinfrac{3x}2-3xcosfrac {x}2-xcosfrac {3x}2}{8x^2}
= limlimits_{xto0}dfrac{2frac x2+2frac{3x}2-3x-x+O(x^3)}{8x^2}=0,$$
$$intlimits_{0}^{infty} dfrac{sin x}x,mathrm dx =fracpi2,$$
then
$$intlimits_{0}^{infty} dfrac{xcos x-sin x}{x^3},cosdfrac x2, mathrm dx
=-frac3{16}left(intlimits_{0}^{infty} dfrac{sinfrac x2}{frac x2},mathrm dfrac x2+intlimits_{0}^{infty} dfrac{sin frac{3x}2}{frac{3x}2},mathrm dfrac{3x}2right) = color{green}{mathbf{-frac{3pi}{16}}}.$$
edited Mar 15 at 22:47
answered Mar 15 at 22:16
Yuri NegometyanovYuri Negometyanov
12k1729
12k1729
1
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
add a comment |
1
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
1
1
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
elegant approach
$endgroup$
– G Cab
Mar 15 at 22:53
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
$begingroup$
@GCab Thanks. I tried to understand the essence of the problem.
$endgroup$
– Yuri Negometyanov
Mar 15 at 23:06
add a comment |
$begingroup$
I use the Laplace transform method instead of Fourier because the first one is the main tool for an electrician (who I am) and the Laplace transform is very similar to the Fourier transform.
By definition of the Laplace transform:
$mathcal{L}f(x)=int_{0}^{infty}e^{-sx}f(x)dx=F(s)$
$mathcal{L}g(x)=int_{0}^{infty}e^{-sx}g(x)dx=G(s)$
Now we use the following equation from the Laplace transform theory:
$$int_{0}^{infty}F(x)g(x)dx=int_{0}^{infty}G(x)f(x)dx$$
and apply it to the required integral.
We take
$F(x)=frac{1}{x^3}$
$g(x)=xcos xcos frac{x}{2}-sin xcos frac{x}{2}$
and get after taking the Laplace and inverse Laplace transforms
$f(x)=frac{x^2}{2}$
$G(x)=frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2}$
Placing these results into the relationship above we arrive at the next expression for the required integral:
$$I=frac{1}{2}int_{0}^{infty}x^2left [ frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2} right ]dx$$
$I=left [- frac{3}{16}arctan 2x- frac{3}{16}arctanfrac{2x}{3}+frac{9x}{4(4x^2+9)^2}+frac{x}{4(4x^2+1)^2}right ]_{0}^{infty}=$
$=- frac{3}{16}frac{pi}{2}- frac{3}{16}frac{pi}{2}=- frac{3pi}{16}$
$endgroup$
add a comment |
$begingroup$
I use the Laplace transform method instead of Fourier because the first one is the main tool for an electrician (who I am) and the Laplace transform is very similar to the Fourier transform.
By definition of the Laplace transform:
$mathcal{L}f(x)=int_{0}^{infty}e^{-sx}f(x)dx=F(s)$
$mathcal{L}g(x)=int_{0}^{infty}e^{-sx}g(x)dx=G(s)$
Now we use the following equation from the Laplace transform theory:
$$int_{0}^{infty}F(x)g(x)dx=int_{0}^{infty}G(x)f(x)dx$$
and apply it to the required integral.
We take
$F(x)=frac{1}{x^3}$
$g(x)=xcos xcos frac{x}{2}-sin xcos frac{x}{2}$
and get after taking the Laplace and inverse Laplace transforms
$f(x)=frac{x^2}{2}$
$G(x)=frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2}$
Placing these results into the relationship above we arrive at the next expression for the required integral:
$$I=frac{1}{2}int_{0}^{infty}x^2left [ frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2} right ]dx$$
$I=left [- frac{3}{16}arctan 2x- frac{3}{16}arctanfrac{2x}{3}+frac{9x}{4(4x^2+9)^2}+frac{x}{4(4x^2+1)^2}right ]_{0}^{infty}=$
$=- frac{3}{16}frac{pi}{2}- frac{3}{16}frac{pi}{2}=- frac{3pi}{16}$
$endgroup$
add a comment |
$begingroup$
I use the Laplace transform method instead of Fourier because the first one is the main tool for an electrician (who I am) and the Laplace transform is very similar to the Fourier transform.
By definition of the Laplace transform:
$mathcal{L}f(x)=int_{0}^{infty}e^{-sx}f(x)dx=F(s)$
$mathcal{L}g(x)=int_{0}^{infty}e^{-sx}g(x)dx=G(s)$
Now we use the following equation from the Laplace transform theory:
$$int_{0}^{infty}F(x)g(x)dx=int_{0}^{infty}G(x)f(x)dx$$
and apply it to the required integral.
We take
$F(x)=frac{1}{x^3}$
$g(x)=xcos xcos frac{x}{2}-sin xcos frac{x}{2}$
and get after taking the Laplace and inverse Laplace transforms
$f(x)=frac{x^2}{2}$
$G(x)=frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2}$
Placing these results into the relationship above we arrive at the next expression for the required integral:
$$I=frac{1}{2}int_{0}^{infty}x^2left [ frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2} right ]dx$$
$I=left [- frac{3}{16}arctan 2x- frac{3}{16}arctanfrac{2x}{3}+frac{9x}{4(4x^2+9)^2}+frac{x}{4(4x^2+1)^2}right ]_{0}^{infty}=$
$=- frac{3}{16}frac{pi}{2}- frac{3}{16}frac{pi}{2}=- frac{3pi}{16}$
$endgroup$
I use the Laplace transform method instead of Fourier because the first one is the main tool for an electrician (who I am) and the Laplace transform is very similar to the Fourier transform.
By definition of the Laplace transform:
$mathcal{L}f(x)=int_{0}^{infty}e^{-sx}f(x)dx=F(s)$
$mathcal{L}g(x)=int_{0}^{infty}e^{-sx}g(x)dx=G(s)$
Now we use the following equation from the Laplace transform theory:
$$int_{0}^{infty}F(x)g(x)dx=int_{0}^{infty}G(x)f(x)dx$$
and apply it to the required integral.
We take
$F(x)=frac{1}{x^3}$
$g(x)=xcos xcos frac{x}{2}-sin xcos frac{x}{2}$
and get after taking the Laplace and inverse Laplace transforms
$f(x)=frac{x^2}{2}$
$G(x)=frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2}$
Placing these results into the relationship above we arrive at the next expression for the required integral:
$$I=frac{1}{2}int_{0}^{infty}x^2left [ frac{4x^2-3}{(4x^2+1)^2}-frac{4x^2+45}{(4x^2+9)^2} right ]dx$$
$I=left [- frac{3}{16}arctan 2x- frac{3}{16}arctanfrac{2x}{3}+frac{9x}{4(4x^2+9)^2}+frac{x}{4(4x^2+1)^2}right ]_{0}^{infty}=$
$=- frac{3}{16}frac{pi}{2}- frac{3}{16}frac{pi}{2}=- frac{3pi}{16}$
answered yesterday
Martin GalesMartin Gales
3,59411935
3,59411935
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1989935%2fevaluating-the-improper-integral-int-0-infty-fracx-cos-x-sin-xx3-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@Tyler6 : You can use $displaystyleintfrac{xcos x - sin x}{x^3}cosfrac{x}{2}dx = -frac{3}{16}left( intlimits_0^{x/2}frac{sin x}{x} + intlimits_0^{3x/2}frac{sin x}{x} right) -frac{cos^2frac{x}{2}}{x^2}left(frac{x}{2}cosfrac{x}{2} - sinfrac{x}{2}right) + C$ $~~$ Why Fourier Transforms ?
$endgroup$
– user90369
Mar 13 at 11:46