Proving by induction of $n$ that $sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1 $prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^3$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_k=1^n (k+1)2^k = n2^n+1 $5. Prove by induction on $n$ that $sumlimits_k=1^n frac kk+1 leq n - frac1n+1$Prove by induction on n that $sumlimits_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1$Prove by induction on n that $sumlimits_k=1^n frac 2^kk leq 2^n$

Adding empty element to declared container without declaring type of element

In Star Trek IV, why did the Bounty go back to a time when whales were already rare?

How can I successfully establish a nationwide combat training program for a large country?

Simple image editor tool to draw a simple box/rectangle in an existing image

The One-Electron Universe postulate is true - what simple change can I make to change the whole universe?

Are Warlocks Arcane or Divine?

Female=gender counterpart?

Is there a problem with hiding "forgot password" until it's needed?

Lifted its hind leg on or lifted its hind leg towards?

Is there an wasy way to program in Tikz something like the one in the image?

Was the picture area of a CRT a parallelogram (instead of a true rectangle)?

Pronouncing Homer as in modern Greek

Can I use my Chinese passport to enter China after I acquired another citizenship?

What is the opposite of 'gravitas'?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Resetting two CD4017 counters simultaneously, only one resets

Freedom of speech and where it applies

My boss asked me to take a one-day class, then signs it up as a day off

What is the term when two people sing in harmony, but they aren't singing the same notes?

Does "Dominei" mean something?

Taylor series of product of two functions

Reply ‘no position’ while the job posting is still there (‘HiWi’ position in Germany)

Is there enough fresh water in the world to eradicate the drinking water crisis?

For airliners, what prevents wing strikes on landing in bad weather?



Proving by induction of $n$ that $sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1 $


prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^3$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_k=1^n (k+1)2^k = n2^n+1 $5. Prove by induction on $n$ that $sumlimits_k=1^n frac kk+1 leq n - frac1n+1$Prove by induction on n that $sumlimits_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1$Prove by induction on n that $sumlimits_k=1^n frac 2^kk leq 2^n$













4












$begingroup$



$$
sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
$$




Base Case:



I did $n = 1$, so..



LHS-



$$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



RHS-



$$frac12 - frac1(n+1)2^n+1 = frac38$$



so LHS = RHS



Inductive case-



LHS for $n+1$



$$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



and then I think that you can use inductive hypothesis to change it to the form of
$$
frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
$$



and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



$$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



$$=$$



$$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



$$=$$



$$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



then put it back in with the rest of the equation, bringing me to



$$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



then



$$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



and



$$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



$$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



which I think simplifies down to this after factoring out a $2^n$ from the numerator?



$$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



canceling out $2^n$



$$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



and I'm stuck, please help!










share|cite|improve this question











$endgroup$
















    4












    $begingroup$



    $$
    sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
    $$




    Base Case:



    I did $n = 1$, so..



    LHS-



    $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



    RHS-



    $$frac12 - frac1(n+1)2^n+1 = frac38$$



    so LHS = RHS



    Inductive case-



    LHS for $n+1$



    $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



    and then I think that you can use inductive hypothesis to change it to the form of
    $$
    frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
    $$



    and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



    $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



    $$=$$



    $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



    $$=$$



    $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



    then put it back in with the rest of the equation, bringing me to



    $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



    then



    $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



    and



    $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



    $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



    which I think simplifies down to this after factoring out a $2^n$ from the numerator?



    $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



    canceling out $2^n$



    $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



    and I'm stuck, please help!










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      1



      $begingroup$



      $$
      sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



      RHS-



      $$frac12 - frac1(n+1)2^n+1 = frac38$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
      $$



      and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



      $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



      $$=$$



      $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



      $$=$$



      $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then put it back in with the rest of the equation, bringing me to



      $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then



      $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



      and



      $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



      $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



      which I think simplifies down to this after factoring out a $2^n$ from the numerator?



      $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



      canceling out $2^n$



      $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



      and I'm stuck, please help!










      share|cite|improve this question











      $endgroup$





      $$
      sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



      RHS-



      $$frac12 - frac1(n+1)2^n+1 = frac38$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
      $$



      and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



      $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



      $$=$$



      $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



      $$=$$



      $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then put it back in with the rest of the equation, bringing me to



      $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then



      $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



      and



      $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



      $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



      which I think simplifies down to this after factoring out a $2^n$ from the numerator?



      $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



      canceling out $2^n$



      $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



      and I'm stuck, please help!







      discrete-mathematics induction






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 8 mins ago









      Asaf Karagila

      307k33439770




      307k33439770










      asked 5 hours ago









      BrownieBrownie

      1927




      1927




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Your error is just after the sixth step from the bottom:



          $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



          Then you are done.



          You accidentally added the two middle terms instead of subtracting.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Using a telescoping sum, we get
            $$
            beginalign
            sum_k=1^nfrack+2k(k+1)2^k+1
            &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
            &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
            &=frac12-frac1(n+1)2^n+1
            endalign
            $$






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-that-sum-k-1n-frac-k2kk12k1-fra%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Your error is just after the sixth step from the bottom:



              $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



              Then you are done.



              You accidentally added the two middle terms instead of subtracting.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                Your error is just after the sixth step from the bottom:



                $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                Then you are done.



                You accidentally added the two middle terms instead of subtracting.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Your error is just after the sixth step from the bottom:



                  $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.






                  share|cite|improve this answer









                  $endgroup$



                  Your error is just after the sixth step from the bottom:



                  $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 5 hours ago









                  John Wayland BalesJohn Wayland Bales

                  15.1k21238




                  15.1k21238





















                      2












                      $begingroup$

                      Using a telescoping sum, we get
                      $$
                      beginalign
                      sum_k=1^nfrack+2k(k+1)2^k+1
                      &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                      &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                      &=frac12-frac1(n+1)2^n+1
                      endalign
                      $$






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Using a telescoping sum, we get
                        $$
                        beginalign
                        sum_k=1^nfrack+2k(k+1)2^k+1
                        &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                        &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                        &=frac12-frac1(n+1)2^n+1
                        endalign
                        $$






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Using a telescoping sum, we get
                          $$
                          beginalign
                          sum_k=1^nfrack+2k(k+1)2^k+1
                          &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                          &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                          &=frac12-frac1(n+1)2^n+1
                          endalign
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          Using a telescoping sum, we get
                          $$
                          beginalign
                          sum_k=1^nfrack+2k(k+1)2^k+1
                          &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                          &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                          &=frac12-frac1(n+1)2^n+1
                          endalign
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 4 hours ago









                          robjohnrobjohn

                          270k27312639




                          270k27312639



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-that-sum-k-1n-frac-k2kk12k1-fra%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Nidaros erkebispedøme

                              Birsay

                              Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...