Coefficient of $x^{n-3}$ in $prod^{n}_{k=1}(x-k)$What is the coefficient of $x^{19}$ in the expansion of $...

Affine transformation of circular arc in 3D

Create chunks from an array

Is it a Cyclops number? "Nobody" knows!

How do you make a gun that shoots melee weapons and/or swords?

Giving a talk in my old university, how prominently should I tell students my salary?

Where do you go through passport control when transiting through another Schengen airport on your way out of the Schengen area?

Can you run a ground wire from stove directly to ground pole in the ground

“I had a flat in the centre of town, but I didn’t like living there, so …”

How can I be pwned if I'm not registered on the compromised site?

What is the oldest European royal house?

Linear Combination of Atomic Orbitals

3.5% Interest Student Loan or use all of my savings on Tuition?

Can a space-faring robot still function over a billion years?

Replacing tantalum capacitor with ceramic capacitor for Op Amps

Should we avoid writing fiction about historical events without extensive research?

Is divide-by-zero a security vulnerability?

Sundering Titan and basic normal lands and snow lands

Are small insurances worth it

The Key to the Door

What does it mean when I add a new variable to my linear model and the R^2 stays the same?

Access point as WiFi repeater with additional WiFi-dongle

In the world of The Matrix, what is "popping"?

Does the in-code argument passing conventions used on PDP-11's have a name?

Why won't the strings command stop?



Coefficient of $x^{n-3}$ in $prod^{n}_{k=1}(x-k)$


What is the coefficient of $x^{19}$ in the expansion of $ prod limits_{n=1}^{20} (x+n^2)$?Find coefficient of $x^8$ in $(1+x+x^2+x^3+…)^c$Computing coefficient of $x^n$Coeff. of $x^{97}$ in $f(x) = (x-1)cdot (x-2)cdot (x-3)cdot (x-4)cdot …(x-100)$Finding the coefficient of a term in an expansion.finding coefficients of $x^{47}$ in polynomial expressionCoefficient in a binomial expansion of geometric progressionproduct of terms taken $3$ at a time in polynomial expression$sqrt{n+sqrt[3]{n+sqrt[3]{n+cdots cdots cdots }}}$ is a natural number, ismaximum value of expression $(sqrt{-3+4x-x^2}+4)^2+(x-5)^2$













0












$begingroup$


Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$



what i try



$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $



How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
    $endgroup$
    – achille hui
    yesterday










  • $begingroup$
    @achille hui did not understand last line.please explain me thanks
    $endgroup$
    – jacky
    yesterday
















0












$begingroup$


Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$



what i try



$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $



How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
    $endgroup$
    – achille hui
    yesterday










  • $begingroup$
    @achille hui did not understand last line.please explain me thanks
    $endgroup$
    – jacky
    yesterday














0












0








0


0



$begingroup$


Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$



what i try



$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $



How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please










share|cite|improve this question









$endgroup$




Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$



what i try



$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $



How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please







algebra-precalculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









jackyjacky

960615




960615








  • 2




    $begingroup$
    Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
    $endgroup$
    – achille hui
    yesterday










  • $begingroup$
    @achille hui did not understand last line.please explain me thanks
    $endgroup$
    – jacky
    yesterday














  • 2




    $begingroup$
    Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
    $endgroup$
    – achille hui
    yesterday










  • $begingroup$
    @achille hui did not understand last line.please explain me thanks
    $endgroup$
    – jacky
    yesterday








2




2




$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday




$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday












$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday




$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday










1 Answer
1






active

oldest

votes


















2












$begingroup$

For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
$$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
Then
begin{align}
sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
&=prod_{k=1}^{n+1}(x+k)\
&=(x+n+1)prod_{k=1}^{n}(x+k)\
&=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
&=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
end{align}

from which
$$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
hence
begin{align}
c_{N,j}-c_{1,j}
&=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
&=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
end{align}

that's
$$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
Since $c_{n,0}=1$, we get
begin{align}
c_{N,1}
&=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
&=1+sum_{n=1}^{N-1}(n+1)\
&=sum_{n=1}^N n\
&=frac 12 N(N+1)\
c_{N,2}
&=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
&=frac 12sum_{n=1}^{N-1}n(n+1)^2\
&=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
c_{N,3}
&=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
&=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
&=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3137876%2fcoefficient-of-xn-3-in-prodn-k-1x-k%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
    $$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
    Then
    begin{align}
    sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
    &=prod_{k=1}^{n+1}(x+k)\
    &=(x+n+1)prod_{k=1}^{n}(x+k)\
    &=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
    &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
    &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
    &=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
    end{align}

    from which
    $$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
    hence
    begin{align}
    c_{N,j}-c_{1,j}
    &=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
    &=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
    end{align}

    that's
    $$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
    Since $c_{n,0}=1$, we get
    begin{align}
    c_{N,1}
    &=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
    &=1+sum_{n=1}^{N-1}(n+1)\
    &=sum_{n=1}^N n\
    &=frac 12 N(N+1)\
    c_{N,2}
    &=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
    &=frac 12sum_{n=1}^{N-1}n(n+1)^2\
    &=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
    c_{N,3}
    &=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
    &=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
    &=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
    end{align}






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
      $$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
      Then
      begin{align}
      sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
      &=prod_{k=1}^{n+1}(x+k)\
      &=(x+n+1)prod_{k=1}^{n}(x+k)\
      &=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
      &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
      &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
      &=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
      end{align}

      from which
      $$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
      hence
      begin{align}
      c_{N,j}-c_{1,j}
      &=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
      &=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
      end{align}

      that's
      $$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
      Since $c_{n,0}=1$, we get
      begin{align}
      c_{N,1}
      &=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
      &=1+sum_{n=1}^{N-1}(n+1)\
      &=sum_{n=1}^N n\
      &=frac 12 N(N+1)\
      c_{N,2}
      &=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
      &=frac 12sum_{n=1}^{N-1}n(n+1)^2\
      &=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
      c_{N,3}
      &=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
      &=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
      &=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
      end{align}






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
        $$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
        Then
        begin{align}
        sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
        &=prod_{k=1}^{n+1}(x+k)\
        &=(x+n+1)prod_{k=1}^{n}(x+k)\
        &=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
        &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
        &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
        &=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
        end{align}

        from which
        $$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
        hence
        begin{align}
        c_{N,j}-c_{1,j}
        &=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
        &=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
        end{align}

        that's
        $$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
        Since $c_{n,0}=1$, we get
        begin{align}
        c_{N,1}
        &=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
        &=1+sum_{n=1}^{N-1}(n+1)\
        &=sum_{n=1}^N n\
        &=frac 12 N(N+1)\
        c_{N,2}
        &=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
        &=frac 12sum_{n=1}^{N-1}n(n+1)^2\
        &=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
        c_{N,3}
        &=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
        &=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
        &=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
        end{align}






        share|cite|improve this answer









        $endgroup$



        For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
        $$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
        Then
        begin{align}
        sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
        &=prod_{k=1}^{n+1}(x+k)\
        &=(x+n+1)prod_{k=1}^{n}(x+k)\
        &=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
        &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
        &=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
        &=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
        end{align}

        from which
        $$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
        hence
        begin{align}
        c_{N,j}-c_{1,j}
        &=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
        &=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
        end{align}

        that's
        $$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
        Since $c_{n,0}=1$, we get
        begin{align}
        c_{N,1}
        &=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
        &=1+sum_{n=1}^{N-1}(n+1)\
        &=sum_{n=1}^N n\
        &=frac 12 N(N+1)\
        c_{N,2}
        &=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
        &=frac 12sum_{n=1}^{N-1}n(n+1)^2\
        &=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
        c_{N,3}
        &=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
        &=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
        &=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 19 hours ago









        Fabio LucchiniFabio Lucchini

        8,62811426




        8,62811426






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3137876%2fcoefficient-of-xn-3-in-prodn-k-1x-k%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Nidaros erkebispedøme

            Birsay

            Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...