Coefficient of $x^{n-3}$ in $prod^{n}_{k=1}(x-k)$What is the coefficient of $x^{19}$ in the expansion of $...
Affine transformation of circular arc in 3D
Create chunks from an array
Is it a Cyclops number? "Nobody" knows!
How do you make a gun that shoots melee weapons and/or swords?
Giving a talk in my old university, how prominently should I tell students my salary?
Where do you go through passport control when transiting through another Schengen airport on your way out of the Schengen area?
Can you run a ground wire from stove directly to ground pole in the ground
“I had a flat in the centre of town, but I didn’t like living there, so …”
How can I be pwned if I'm not registered on the compromised site?
What is the oldest European royal house?
Linear Combination of Atomic Orbitals
3.5% Interest Student Loan or use all of my savings on Tuition?
Can a space-faring robot still function over a billion years?
Replacing tantalum capacitor with ceramic capacitor for Op Amps
Should we avoid writing fiction about historical events without extensive research?
Is divide-by-zero a security vulnerability?
Sundering Titan and basic normal lands and snow lands
Are small insurances worth it
The Key to the Door
What does it mean when I add a new variable to my linear model and the R^2 stays the same?
Access point as WiFi repeater with additional WiFi-dongle
In the world of The Matrix, what is "popping"?
Does the in-code argument passing conventions used on PDP-11's have a name?
Why won't the strings command stop?
Coefficient of $x^{n-3}$ in $prod^{n}_{k=1}(x-k)$
What is the coefficient of $x^{19}$ in the expansion of $ prod limits_{n=1}^{20} (x+n^2)$?Find coefficient of $x^8$ in $(1+x+x^2+x^3+…)^c$Computing coefficient of $x^n$Coeff. of $x^{97}$ in $f(x) = (x-1)cdot (x-2)cdot (x-3)cdot (x-4)cdot …(x-100)$Finding the coefficient of a term in an expansion.finding coefficients of $x^{47}$ in polynomial expressionCoefficient in a binomial expansion of geometric progressionproduct of terms taken $3$ at a time in polynomial expression$sqrt{n+sqrt[3]{n+sqrt[3]{n+cdots cdots cdots }}}$ is a natural number, ismaximum value of expression $(sqrt{-3+4x-x^2}+4)^2+(x-5)^2$
$begingroup$
Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$
what i try
$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $
How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$
what i try
$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $
How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please
algebra-precalculus
$endgroup$
2
$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday
$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday
add a comment |
$begingroup$
Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$
what i try
$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $
How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please
algebra-precalculus
$endgroup$
Finding Coefficient of $x^{n-3}$ in $displaystyle prod^{n}_{k=1}(x-k)$
what i try
$displaystyle prod^{n}_{k=1}(x-k)=x^n-bigg(sum^{n}_{i=1}ibigg)+bigg(mathop{sumsum}_{1leq i <j leq n}ijbigg)x^{n-2}-bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)x^{n-3}+cdots $
How do i find $displaystyle bigg(mathop{sumsumsum}_{1leq i <j<kleq n}ijkbigg)$ help me please
algebra-precalculus
algebra-precalculus
asked yesterday
jackyjacky
960615
960615
2
$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday
$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday
add a comment |
2
$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday
$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday
2
2
$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday
$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday
$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday
$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
$$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
Then
begin{align}
sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
&=prod_{k=1}^{n+1}(x+k)\
&=(x+n+1)prod_{k=1}^{n}(x+k)\
&=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
&=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
end{align}
from which
$$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
hence
begin{align}
c_{N,j}-c_{1,j}
&=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
&=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
end{align}
that's
$$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
Since $c_{n,0}=1$, we get
begin{align}
c_{N,1}
&=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
&=1+sum_{n=1}^{N-1}(n+1)\
&=sum_{n=1}^N n\
&=frac 12 N(N+1)\
c_{N,2}
&=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
&=frac 12sum_{n=1}^{N-1}n(n+1)^2\
&=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
c_{N,3}
&=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
&=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
&=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3137876%2fcoefficient-of-xn-3-in-prodn-k-1x-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
$$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
Then
begin{align}
sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
&=prod_{k=1}^{n+1}(x+k)\
&=(x+n+1)prod_{k=1}^{n}(x+k)\
&=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
&=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
end{align}
from which
$$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
hence
begin{align}
c_{N,j}-c_{1,j}
&=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
&=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
end{align}
that's
$$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
Since $c_{n,0}=1$, we get
begin{align}
c_{N,1}
&=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
&=1+sum_{n=1}^{N-1}(n+1)\
&=sum_{n=1}^N n\
&=frac 12 N(N+1)\
c_{N,2}
&=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
&=frac 12sum_{n=1}^{N-1}n(n+1)^2\
&=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
c_{N,3}
&=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
&=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
&=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
end{align}
$endgroup$
add a comment |
$begingroup$
For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
$$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
Then
begin{align}
sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
&=prod_{k=1}^{n+1}(x+k)\
&=(x+n+1)prod_{k=1}^{n}(x+k)\
&=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
&=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
end{align}
from which
$$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
hence
begin{align}
c_{N,j}-c_{1,j}
&=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
&=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
end{align}
that's
$$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
Since $c_{n,0}=1$, we get
begin{align}
c_{N,1}
&=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
&=1+sum_{n=1}^{N-1}(n+1)\
&=sum_{n=1}^N n\
&=frac 12 N(N+1)\
c_{N,2}
&=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
&=frac 12sum_{n=1}^{N-1}n(n+1)^2\
&=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
c_{N,3}
&=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
&=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
&=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
end{align}
$endgroup$
add a comment |
$begingroup$
For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
$$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
Then
begin{align}
sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
&=prod_{k=1}^{n+1}(x+k)\
&=(x+n+1)prod_{k=1}^{n}(x+k)\
&=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
&=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
end{align}
from which
$$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
hence
begin{align}
c_{N,j}-c_{1,j}
&=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
&=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
end{align}
that's
$$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
Since $c_{n,0}=1$, we get
begin{align}
c_{N,1}
&=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
&=1+sum_{n=1}^{N-1}(n+1)\
&=sum_{n=1}^N n\
&=frac 12 N(N+1)\
c_{N,2}
&=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
&=frac 12sum_{n=1}^{N-1}n(n+1)^2\
&=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
c_{N,3}
&=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
&=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
&=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
end{align}
$endgroup$
For every positive integer $n$, let $c_{n,j}=0$ if $j<0$ or $j>n$ and
$$prod_{k=1}^n(x+k)=sum_{j=0}^nc_{n,j}x^{n-j}$$
Then
begin{align}
sum_{j=0}^{n+1}c_{n+1,j}x^{n+1-j}
&=prod_{k=1}^{n+1}(x+k)\
&=(x+n+1)prod_{k=1}^{n}(x+k)\
&=(x+n+1)sum_{j=0}^nc_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=0}^n(n+1)c_{n,j}x^{n-j}\
&=sum_{j=0}^nc_{n,j}x^{n+1-j}+sum_{j=1}^{n+1}(n+1)c_{n,j-1}x^{n+1-j}\
&=sum_{j=0}^n(c_{n,j}+(n+1)c_{n,j-1})x^{n+1-j}
end{align}
from which
$$c_{n+1,j}=c_{n,j}+(n+1)c_{n,j-1}$$
hence
begin{align}
c_{N,j}-c_{1,j}
&=sum_{n=1}^{N-1}(c_{n+1,j}-c_{n,j})\
&=sum_{n=1}^{N-1}(n+1)c_{n,j-1}
end{align}
that's
$$c_{N,j}=c_{1,j}+sum_{n=1}^{N-1}(n+1)c_{n,j-1}$$
Since $c_{n,0}=1$, we get
begin{align}
c_{N,1}
&=c_{1,1}+sum_{n=1}^{N-1}(n+1)c_{n,0}\
&=1+sum_{n=1}^{N-1}(n+1)\
&=sum_{n=1}^N n\
&=frac 12 N(N+1)\
c_{N,2}
&=c_{1,2}+sum_{n=1}^{N-1}(n+1)c_{n,1}\
&=frac 12sum_{n=1}^{N-1}n(n+1)^2\
&=frac 1{24}(N - 1) N (N + 1) (3 N + 2)\
c_{N,3}
&=c_{1,3}+sum_{n=1}^{N-1}(n+1)c_{n,2}\
&=frac 1{24}sum_{n=1}^{N-1}(n - 1) n (n + 1)^2 (3 n + 2)\
&=frac 1{48}(N - 2) (N - 1) N^2 (N + 1)^2
end{align}
answered 19 hours ago
Fabio LucchiniFabio Lucchini
8,62811426
8,62811426
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3137876%2fcoefficient-of-xn-3-in-prodn-k-1x-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Using Newton's identities, you can express the sum at hand in terms of $sum_{k=1}^n k^ell$ for $ell = 1, 2, 3$...
$endgroup$
– achille hui
yesterday
$begingroup$
@achille hui did not understand last line.please explain me thanks
$endgroup$
– jacky
yesterday