Why do we call complex numbers “numbers” but we don’t consider 2 vectors numbers?What exactly is a number?Relationship between complex number and vectorsAre there any numbers more fundamental than Complex numbers?Why are complex numbers considered to be numbers?Does it make sense to compare complex numbers in certain circumstances?Usefulness of alternative constructions of the complex numbersComplex numbers?Why are complex numbers so magical?What can complex numbers do that linear algebra cannot?complex numbers and rotation matricesIf there is anything else introduced into equations like the complex numbers.

Too soon for a plot twist?

Professor forcing me to attend a conference

What does "rhumatis" mean?

Learning to quickly identify valid fingering for piano?

When to use the term transposed instead of modulation?

Affine transformation of circular arc in 3D

Replacing tantalum capacitor with ceramic capacitor for Op Amps

Is this nominative case or accusative case?

Custom javascript not working

Is there a math expression equivalent to the conditional ternary operator?

If nine coins are tossed, what is the probability that the number of heads is even?

A bug in Excel? Conditional formatting for marking duplicates also highlights unique value

Remove object from array based on array of some property of that object

How can I be pwned if I'm not registered on the compromised site?

School performs periodic password audits. Is my password compromised?

Why is my explanation wrong?

Create chunks from an array

Dukha vs legitimate need

Is "cogitate" an appropriate word for this?

How to write a chaotic neutral protagonist and prevent my readers from thinking they are evil?

Why can't we use freedom of speech and expression to incite people to rebel against government in India?

What is Tony Stark injecting into himself in Iron Man 3?

Where is the fallacy here?

The need of reserving one's ability in job interviews



Why do we call complex numbers “numbers” but we don’t consider 2 vectors numbers?


What exactly is a number?Relationship between complex number and vectorsAre there any numbers more fundamental than Complex numbers?Why are complex numbers considered to be numbers?Does it make sense to compare complex numbers in certain circumstances?Usefulness of alternative constructions of the complex numbersComplex numbers?Why are complex numbers so magical?What can complex numbers do that linear algebra cannot?complex numbers and rotation matricesIf there is anything else introduced into equations like the complex numbers.













8












$begingroup$


We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbbZ$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    7 hours ago







  • 4




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    6 hours ago










  • $begingroup$
    I would say that $mathbbZ$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    6 hours ago






  • 5




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbbR^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    6 hours ago






  • 2




    $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    6 hours ago
















8












$begingroup$


We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?










share|cite|improve this question











$endgroup$







  • 7




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbbZ$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    7 hours ago







  • 4




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    6 hours ago










  • $begingroup$
    I would say that $mathbbZ$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    6 hours ago






  • 5




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbbR^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    6 hours ago






  • 2




    $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    6 hours ago














8












8








8


2



$begingroup$


We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?










share|cite|improve this question











$endgroup$




We refer to complex numbers as numbers. However we refer to vectors as arrays of numbers. There doesn’t seem to be anything that makes one more numeric than the other. Is this just a quirk of history and naming or is there something more fundamental?







matrices complex-numbers philosophy






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 6 hours ago









Bernard

122k740116




122k740116










asked 7 hours ago









Q the PlatypusQ the Platypus

2,808933




2,808933







  • 7




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbbZ$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    7 hours ago







  • 4




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    6 hours ago










  • $begingroup$
    I would say that $mathbbZ$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    6 hours ago






  • 5




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbbR^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    6 hours ago






  • 2




    $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    6 hours ago













  • 7




    $begingroup$
    Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbbZ$ a group or a ring? It depends on which operations are of interest for the question you're studying.
    $endgroup$
    – Nate Eldredge
    7 hours ago







  • 4




    $begingroup$
    What's a "number" anyway?
    $endgroup$
    – Asaf Karagila
    6 hours ago










  • $begingroup$
    I would say that $mathbbZ$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
    $endgroup$
    – Q the Platypus
    6 hours ago






  • 5




    $begingroup$
    @QthePlatypus: No, that's exactly the point. The question of whether the set $mathbbR^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
    $endgroup$
    – Nate Eldredge
    6 hours ago






  • 2




    $begingroup$
    I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
    $endgroup$
    – user
    6 hours ago








7




7




$begingroup$
Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbbZ$ a group or a ring? It depends on which operations are of interest for the question you're studying.
$endgroup$
– Nate Eldredge
7 hours ago





$begingroup$
Usually, the difference would be whether you're in a context where complex multiplication would be interesting. It's kind of like the question: is $mathbbZ$ a group or a ring? It depends on which operations are of interest for the question you're studying.
$endgroup$
– Nate Eldredge
7 hours ago





4




4




$begingroup$
What's a "number" anyway?
$endgroup$
– Asaf Karagila
6 hours ago




$begingroup$
What's a "number" anyway?
$endgroup$
– Asaf Karagila
6 hours ago












$begingroup$
I would say that $mathbbZ$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
$endgroup$
– Q the Platypus
6 hours ago




$begingroup$
I would say that $mathbbZ$ is not a ring or a group as you have to have an operator in order to be a magma. However that would be over pedantic so I get where you are coming from.
$endgroup$
– Q the Platypus
6 hours ago




5




5




$begingroup$
@QthePlatypus: No, that's exactly the point. The question of whether the set $mathbbR^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
$endgroup$
– Nate Eldredge
6 hours ago




$begingroup$
@QthePlatypus: No, that's exactly the point. The question of whether the set $mathbbR^2$ of pairs of real numbers should be considered as the set of complex numbers, or as a set of vectors, depends on which operations you wish to equip that set with.
$endgroup$
– Nate Eldredge
6 hours ago




2




2




$begingroup$
I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
$endgroup$
– user
6 hours ago





$begingroup$
I think the correct question were: is there a rigorous definition of the object "number" (without further characteristics such as "integer", "real", "complex" etc.)?
$endgroup$
– user
6 hours ago











4 Answers
4






active

oldest

votes


















11












$begingroup$

They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



"Higher" number systems, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbbN$, $mathbbZ$, $mathbbQ$, $mathbbR$ and $mathbbC$ are technically just sets with a certain algebraic structure.



I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Wikipedia calls the quaternions a number system.
    $endgroup$
    – JJJ
    1 hour ago


















9












$begingroup$

The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
    $endgroup$
    – Q the Platypus
    6 hours ago






  • 3




    $begingroup$
    That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
    $endgroup$
    – user247327
    6 hours ago






  • 1




    $begingroup$
    You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
    $endgroup$
    – Hong Ooi
    3 hours ago






  • 2




    $begingroup$
    @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
    $endgroup$
    – Kevin
    3 hours ago



















0












$begingroup$

Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbbN$. Afterwards, people started to "count backwards" to get $mathbbZ$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbbQ$ made its way to the world. A certain idea of geometric continuity gives us $mathbbR$. Finally we want all equations to have a root, that's how $mathbbC$ comes into play.



I guess what is considered "numbers" is rather a social question. The use of $mathbbC$
in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



I think it's not that natural to think of $mathbbC$ as a $mathbbR$-vector space of dimension $2$, not more natural than to think of $mathbbR$ as an infinite-dimensional $mathbbQ$-vector space, nor of $mathbbQ$ as a non-infinitely-generated $mathbbZ$-module.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    People do think of complex numbers as points on the number plane.
    $endgroup$
    – Q the Platypus
    6 hours ago






  • 1




    $begingroup$
    Thank you. I'm sorry, that final part is just a personal opinion. edited.
    $endgroup$
    – Leaning
    6 hours ago



















0












$begingroup$

I think naming is a rather soft topic, so there may not be a hard answer. However, I think it is worth noting that complex numbers are one of the three associative real division algebras (real numbers, complex numbers, and quaternions). These are all linked by the idea that division is meaningful in those three systems.



In general, a 2 dimensional real vector cannot admit a concept of division which matches what we expect division to do. However, if said real vector defines addition and multiplication the way complex numbers do, division is a natural result of those definitions.






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3139486%2fwhy-do-we-call-complex-numbers-numbers-but-we-don-t-consider-2-vectors-numbers%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



    "Higher" number systems, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



    Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbbN$, $mathbbZ$, $mathbbQ$, $mathbbR$ and $mathbbC$ are technically just sets with a certain algebraic structure.



    I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Wikipedia calls the quaternions a number system.
      $endgroup$
      – JJJ
      1 hour ago















    11












    $begingroup$

    They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



    "Higher" number systems, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



    Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbbN$, $mathbbZ$, $mathbbQ$, $mathbbR$ and $mathbbC$ are technically just sets with a certain algebraic structure.



    I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Wikipedia calls the quaternions a number system.
      $endgroup$
      – JJJ
      1 hour ago













    11












    11








    11





    $begingroup$

    They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



    "Higher" number systems, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



    Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbbN$, $mathbbZ$, $mathbbQ$, $mathbbR$ and $mathbbC$ are technically just sets with a certain algebraic structure.



    I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?






    share|cite|improve this answer











    $endgroup$



    They're called "numbers" for historical reasons, since the motivation in the development of the complex numbers was solving polynomial equations. They were viewed as natural extensions of the real numbers. It's somehow quite natural and satisfying to say "every polynomial equation can be solved by some (complex) number". Is it more natural to regard $i$ as being a number which, when squared, is equal to $-1$, or is it more natural to regard $i$ as being some non-number thingamajig which when squared is equal to $-1$? Clearly the former.



    "Higher" number systems, like quaternions, aren't really called numbers very often, for the simple fact that they are not as intimately connected with number theory and analysis in the same way that complex numbers are.



    Beyond these social conventions, I can't see any other reason. The word "number" doesn't have a strict or absolute definition in pure mathematics. $mathbbN$, $mathbbZ$, $mathbbQ$, $mathbbR$ and $mathbbC$ are technically just sets with a certain algebraic structure.



    I partially disagree with the other answers which claim that complex numbers are numbers simply by virtue of the fact that you can add and multiply them. Well, if that's the rationale, is every ring also a set of numbers?







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 3 hours ago

























    answered 6 hours ago









    MathematicsStudent1122MathematicsStudent1122

    8,81622468




    8,81622468











    • $begingroup$
      Wikipedia calls the quaternions a number system.
      $endgroup$
      – JJJ
      1 hour ago
















    • $begingroup$
      Wikipedia calls the quaternions a number system.
      $endgroup$
      – JJJ
      1 hour ago















    $begingroup$
    Wikipedia calls the quaternions a number system.
    $endgroup$
    – JJJ
    1 hour ago




    $begingroup$
    Wikipedia calls the quaternions a number system.
    $endgroup$
    – JJJ
    1 hour ago











    9












    $begingroup$

    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      6 hours ago






    • 1




      $begingroup$
      You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
      $endgroup$
      – Hong Ooi
      3 hours ago






    • 2




      $begingroup$
      @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
      $endgroup$
      – Kevin
      3 hours ago
















    9












    $begingroup$

    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      6 hours ago






    • 1




      $begingroup$
      You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
      $endgroup$
      – Hong Ooi
      3 hours ago






    • 2




      $begingroup$
      @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
      $endgroup$
      – Kevin
      3 hours ago














    9












    9








    9





    $begingroup$

    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.






    share|cite|improve this answer









    $endgroup$



    The two fundamental operations for numbers are "addition" and "multiplication" which obey very nice "laws" of arithmetic. Taking powers is also important. You can do all of those things with complex numbers. You can add two vectors but the "dot" product of two vectors is not a vector and the "cross" product of two vectors does not satisfy the "nice laws". Neither the dot product nor the cross product of vectors can be used to define powers.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 6 hours ago









    user247327user247327

    11.3k1515




    11.3k1515











    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      6 hours ago






    • 1




      $begingroup$
      You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
      $endgroup$
      – Hong Ooi
      3 hours ago






    • 2




      $begingroup$
      @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
      $endgroup$
      – Kevin
      3 hours ago

















    • $begingroup$
      So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 3




      $begingroup$
      That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
      $endgroup$
      – user247327
      6 hours ago






    • 1




      $begingroup$
      You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
      $endgroup$
      – Hong Ooi
      3 hours ago






    • 2




      $begingroup$
      @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
      $endgroup$
      – Kevin
      3 hours ago
















    $begingroup$
    So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
    $endgroup$
    – Q the Platypus
    6 hours ago




    $begingroup$
    So Quaternions which have Non commutativity multiplication would also be considered as non numbers?
    $endgroup$
    – Q the Platypus
    6 hours ago




    3




    3




    $begingroup$
    That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
    $endgroup$
    – user247327
    6 hours ago




    $begingroup$
    That's a good point- though I have never liked quaternions! Multiplication of quaternions is not commutative but it is associative which allows powers. That's what I was really thinking of.
    $endgroup$
    – user247327
    6 hours ago




    1




    1




    $begingroup$
    You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
    $endgroup$
    – Hong Ooi
    3 hours ago




    $begingroup$
    You can also add and multiply matrices, but I don't think I've ever heard anyone call a matrix a "number".
    $endgroup$
    – Hong Ooi
    3 hours ago




    2




    2




    $begingroup$
    @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
    $endgroup$
    – Kevin
    3 hours ago





    $begingroup$
    @user247327: It's worth pointing out that IEEE 754 floating point numbers are non-associative, closed under division, non-reflexive (i.e. they violate $forall a:a = a$), non-substitutable (i.e. numbers which are "equal" cannot always be substituted for one another in expressions or equations), and also the most widely used approximation of the reals in practical computing applications.
    $endgroup$
    – Kevin
    3 hours ago












    0












    $begingroup$

    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbbN$. Afterwards, people started to "count backwards" to get $mathbbZ$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbbQ$ made its way to the world. A certain idea of geometric continuity gives us $mathbbR$. Finally we want all equations to have a root, that's how $mathbbC$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbbC$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbbC$ as a $mathbbR$-vector space of dimension $2$, not more natural than to think of $mathbbR$ as an infinite-dimensional $mathbbQ$-vector space, nor of $mathbbQ$ as a non-infinitely-generated $mathbbZ$-module.






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 1




      $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      6 hours ago
















    0












    $begingroup$

    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbbN$. Afterwards, people started to "count backwards" to get $mathbbZ$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbbQ$ made its way to the world. A certain idea of geometric continuity gives us $mathbbR$. Finally we want all equations to have a root, that's how $mathbbC$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbbC$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbbC$ as a $mathbbR$-vector space of dimension $2$, not more natural than to think of $mathbbR$ as an infinite-dimensional $mathbbQ$-vector space, nor of $mathbbQ$ as a non-infinitely-generated $mathbbZ$-module.






    share|cite|improve this answer











    $endgroup$








    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 1




      $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      6 hours ago














    0












    0








    0





    $begingroup$

    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbbN$. Afterwards, people started to "count backwards" to get $mathbbZ$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbbQ$ made its way to the world. A certain idea of geometric continuity gives us $mathbbR$. Finally we want all equations to have a root, that's how $mathbbC$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbbC$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbbC$ as a $mathbbR$-vector space of dimension $2$, not more natural than to think of $mathbbR$ as an infinite-dimensional $mathbbQ$-vector space, nor of $mathbbQ$ as a non-infinitely-generated $mathbbZ$-module.






    share|cite|improve this answer











    $endgroup$



    Numbers appeared first when we started to count things. $1$ tree, $2$ trees, $3$ trees, and so forth. That make up the set of non-zero natural numbers: $mathbbN$. Afterwards, people started to "count backwards" to get $mathbbZ$ (I'm just kidding, you can do some research on how negative numbers appeared historically). With the urge to divide things without remainders, the set of rational numbers $mathbbQ$ made its way to the world. A certain idea of geometric continuity gives us $mathbbR$. Finally we want all equations to have a root, that's how $mathbbC$ comes into play.



    I guess what is considered "numbers" is rather a social question. The use of $mathbbC$
    in physics and its $2$-D representation must have given a good intuition for a large set of people to accept it's intuitive enough to be considered "numbers".



    I think it's not that natural to think of $mathbbC$ as a $mathbbR$-vector space of dimension $2$, not more natural than to think of $mathbbR$ as an infinite-dimensional $mathbbQ$-vector space, nor of $mathbbQ$ as a non-infinitely-generated $mathbbZ$-module.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 6 hours ago

























    answered 6 hours ago









    LeaningLeaning

    1,221718




    1,221718







    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 1




      $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      6 hours ago













    • 2




      $begingroup$
      People do think of complex numbers as points on the number plane.
      $endgroup$
      – Q the Platypus
      6 hours ago






    • 1




      $begingroup$
      Thank you. I'm sorry, that final part is just a personal opinion. edited.
      $endgroup$
      – Leaning
      6 hours ago








    2




    2




    $begingroup$
    People do think of complex numbers as points on the number plane.
    $endgroup$
    – Q the Platypus
    6 hours ago




    $begingroup$
    People do think of complex numbers as points on the number plane.
    $endgroup$
    – Q the Platypus
    6 hours ago




    1




    1




    $begingroup$
    Thank you. I'm sorry, that final part is just a personal opinion. edited.
    $endgroup$
    – Leaning
    6 hours ago





    $begingroup$
    Thank you. I'm sorry, that final part is just a personal opinion. edited.
    $endgroup$
    – Leaning
    6 hours ago












    0












    $begingroup$

    I think naming is a rather soft topic, so there may not be a hard answer. However, I think it is worth noting that complex numbers are one of the three associative real division algebras (real numbers, complex numbers, and quaternions). These are all linked by the idea that division is meaningful in those three systems.



    In general, a 2 dimensional real vector cannot admit a concept of division which matches what we expect division to do. However, if said real vector defines addition and multiplication the way complex numbers do, division is a natural result of those definitions.






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      I think naming is a rather soft topic, so there may not be a hard answer. However, I think it is worth noting that complex numbers are one of the three associative real division algebras (real numbers, complex numbers, and quaternions). These are all linked by the idea that division is meaningful in those three systems.



      In general, a 2 dimensional real vector cannot admit a concept of division which matches what we expect division to do. However, if said real vector defines addition and multiplication the way complex numbers do, division is a natural result of those definitions.






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        I think naming is a rather soft topic, so there may not be a hard answer. However, I think it is worth noting that complex numbers are one of the three associative real division algebras (real numbers, complex numbers, and quaternions). These are all linked by the idea that division is meaningful in those three systems.



        In general, a 2 dimensional real vector cannot admit a concept of division which matches what we expect division to do. However, if said real vector defines addition and multiplication the way complex numbers do, division is a natural result of those definitions.






        share|cite|improve this answer









        $endgroup$



        I think naming is a rather soft topic, so there may not be a hard answer. However, I think it is worth noting that complex numbers are one of the three associative real division algebras (real numbers, complex numbers, and quaternions). These are all linked by the idea that division is meaningful in those three systems.



        In general, a 2 dimensional real vector cannot admit a concept of division which matches what we expect division to do. However, if said real vector defines addition and multiplication the way complex numbers do, division is a natural result of those definitions.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        Cort AmmonCort Ammon

        2,421716




        2,421716



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3139486%2fwhy-do-we-call-complex-numbers-numbers-but-we-don-t-consider-2-vectors-numbers%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Nidaros erkebispedøme

            Birsay

            Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...