Proving $int_0^infty logleft (1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dx =2pi sin theta$Computing...
How do I hide Chekhov's Gun?
Print a physical multiplication table
Describing a chess game in a novel
Why does overlay work only on the first tcolorbox?
Is it normal that my co-workers at a fitness company criticize my food choices?
Math equation in non italic font
Why does a Star of David appear at a rally with Francisco Franco?
Is there a place to find the pricing for things not mentioned in the PHB? (non-magical)
How to explain that I do not want to visit a country due to personal safety concern?
Simplify an interface for flexibly applying rules to periods of time
How could a scammer know the apps on my phone / iTunes account?
Does .bashrc contain syntax errors?
As a new Ubuntu desktop 18.04 LTS user, do I need to use ufw for a firewall or is iptables sufficient?
Are all passive ability checks floors for active ability checks?
Is honey really a supersaturated solution? Does heating to un-crystalize redissolve it or melt it?
How are passwords stolen from companies if they only store hashes?
What is the relationship between relativity and the Doppler effect?
Why Choose Less Effective Armour Types?
Relationship between sampajanna definitions in SN 47.2 and SN 47.35
How do you talk to someone whose loved one is dying?
Is it good practice to use Linear Least-Squares with SMA?
How to get the n-th line after a grepped one?
Violin - Can double stops be played when the strings are not next to each other?
Different outputs for `w`, `who`, `whoami` and `id`
Proving $int_0^infty logleft (1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dx =2pi sin theta$
Computing $int_{0}^{pi}lnleft(1-2acos x+a^2right) , dx$Find the integral of log(1 - a/x^2 + 1/x^4) from 0 to infinityEvaluating $int_0^{largefrac{pi}{4}} logleft( cos xright) , mathrm{d}x $$iint_D cos left( frac{x-y}{x+y} right),dA$Evaluate: $int_0^{pi} ln left( sin theta right) dtheta$Computation of $int_0^{pi} frac{sin^n theta}{(1+x^2-2x cdot cos theta)^{frac{n}{2}}} , dtheta$A Challenging Integral $int_0^{frac{pi}{2}}log left( x^2+log^2(cos x)right)dx$Log Sine: $int_0^pi theta^2 ln^2big(2sinfrac{theta}{2}big)d theta.$Prove $cos(2theta) + cosleft(2 left(frac{pi}{3} + thetaright)right) +cosleft(2 left(frac{2pi}{3} + thetaright)right) = 0$Closed form of $int_0^{pi/2} frac{arctan^2 (sin^2 theta)}{sin^2 theta},dtheta$Interesting integral: $I=int_0^1 int_0^1 logleft( cos(pi x)^2 + cos(pi y)^2 right)dxdy$Substitutions for the trigonometric integral $int cos theta cos^5left(sin thetaright) dtheta$
$begingroup$
Prove $$int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dx =2pi sin theta$$where $thetain[0,pi]$.
I've met another similar problem,
$$ int_0^{2pi} log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.
And I got stuck on the proposition in the title. I found that
$$1-2frac{cos 2theta}{x^2}+frac{1}{x^4} =left(frac{1}{x}-e^{itheta}right)left(frac{1}{x}+e^{itheta}right)left(frac{1}{x}-e^{-itheta}right)left(frac{1}{x}+e^{-itheta}right)$$
But I couldn't move on.
Any hints? Thanks in advance.
calculus integration trigonometry definite-integrals logarithms
$endgroup$
add a comment |
$begingroup$
Prove $$int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dx =2pi sin theta$$where $thetain[0,pi]$.
I've met another similar problem,
$$ int_0^{2pi} log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.
And I got stuck on the proposition in the title. I found that
$$1-2frac{cos 2theta}{x^2}+frac{1}{x^4} =left(frac{1}{x}-e^{itheta}right)left(frac{1}{x}+e^{itheta}right)left(frac{1}{x}-e^{-itheta}right)left(frac{1}{x}+e^{-itheta}right)$$
But I couldn't move on.
Any hints? Thanks in advance.
calculus integration trigonometry definite-integrals logarithms
$endgroup$
$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30
1
$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11
add a comment |
$begingroup$
Prove $$int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dx =2pi sin theta$$where $thetain[0,pi]$.
I've met another similar problem,
$$ int_0^{2pi} log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.
And I got stuck on the proposition in the title. I found that
$$1-2frac{cos 2theta}{x^2}+frac{1}{x^4} =left(frac{1}{x}-e^{itheta}right)left(frac{1}{x}+e^{itheta}right)left(frac{1}{x}-e^{-itheta}right)left(frac{1}{x}+e^{-itheta}right)$$
But I couldn't move on.
Any hints? Thanks in advance.
calculus integration trigonometry definite-integrals logarithms
$endgroup$
Prove $$int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dx =2pi sin theta$$where $thetain[0,pi]$.
I've met another similar problem,
$$ int_0^{2pi} log(1-2rcos theta +r^2) dtheta=2pi log^+(r^2) $$
I am curious whether there is any relationship between them.
And I got stuck on the proposition in the title. I found that
$$1-2frac{cos 2theta}{x^2}+frac{1}{x^4} =left(frac{1}{x}-e^{itheta}right)left(frac{1}{x}+e^{itheta}right)left(frac{1}{x}-e^{-itheta}right)left(frac{1}{x}+e^{-itheta}right)$$
But I couldn't move on.
Any hints? Thanks in advance.
calculus integration trigonometry definite-integrals logarithms
calculus integration trigonometry definite-integrals logarithms
edited Mar 11 at 12:18
Zero
asked Mar 11 at 10:20
ZeroZero
49811
49811
$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30
1
$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11
add a comment |
$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30
1
$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11
$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30
$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30
1
1
$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11
$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We start off by some $xrightarrow frac{1}{x}$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dxoverset{xrightarrow frac{1}{x}}=int_0^infty frac{ln(1- 2cos(2theta) x^2 +x^4)}{x^2}dx$$
$$I'(theta)=4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dxoverset{xrightarrow frac{1}{x}}=4int_0^infty frac{sin(2theta)x^2}{x^4-2cos(2theta)x^2+1}dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty frac{sin(2theta)(1+x^2)}{x^4-2cos(2theta)x^2+1}dx=4int_0^infty frac{sin(2theta)left(frac{1}{x^2}+1right)}{x^2+frac{1}{x^2}-2cos(2theta)}dx$$
$$Rightarrow I'(theta)=2int_0^infty frac{sin(2theta)left(x-frac{1}{x}right)'}{left(x-frac{1}{x}right)^2 +2(1-cos(2theta))}dxoverset{large x- frac{1}{x}=t}=2int_{-infty}^infty frac{sin(2theta)}{t^2 +4sin^2 (theta)}dt$$
$$=2 frac{sin(2theta)}{2sin(theta)}arctanleft(frac{t}{2sin(theta)}right)bigg|_{-infty}^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxed{I(theta)=2pisin(theta)}$$
$endgroup$
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
1
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
|
show 3 more comments
$begingroup$
For $theta in [0;pi]$,
begin{align}
J(theta)&=int_0^infty lnleft(1-frac{2cos(2theta)}{x^2}+frac{1}{x^4}right) ,dx
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}
J(theta)&=int_0^infty frac{lnleft(1-2cos(2theta)x^2+x^4right)}{x^2} ,dx
end{align}
For $ageq -1$, define the function $F$ by,
begin{align}F(a)&=int_0^infty frac{lnleft(1+2ax^2+x^4right)}{x^2} ,dx\
&=left[-frac{lnleft(1+2ax^2+x^4right)}{x}right]_0^infty+int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
&=int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}F(a)&=int_0^infty frac{4left( frac{1}{x^2}+aright) }{x^2left(1+frac{2a}{x^2}+frac{1}{x^4}right) } ,dx\
&=int_0^infty frac{4left( 1+ax^2right) }{x^4+2ax^2+1 } ,dx\
end{align}
Therefore,
begin{align}F(a)&=int_0^infty frac{2(a+1)left( 1+x^2right) }{x^4+2ax^2+1 } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{x^2+frac{1}{x^2}+2a } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{left(x-frac{1}{x}right)^2+2(a+1) } ,dx\
end{align}
Perform the change of variable $y=x-dfrac{1}{x}$,
begin{align}F(a)&= 2(a+1)int_{-infty}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=4(a+1)int_{0}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=left[2sqrt{2(a+1)}arctanleft( frac{x}{sqrt{2(a+1)}} right)right]_0^infty\
&=boxed{pisqrt{2(1+a)}}
end{align}
Observe that, $J(theta)=Fbig(-cos(2theta)big)$.
begin{align} 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
end{align}
Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt{2(1-cos(2theta))}=2sin(theta)$
Therefore,
begin{align}boxed{J(theta)=2pi sin(theta)}end{align}
$endgroup$
add a comment |
$begingroup$
To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac{1}{x}$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^{-2}|dx=2int_0^1left[(1+frac{1}{x^2})ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_{nge 0}frac{x^{2n}}{n+1}+2ln xright]dx=-2int_0^1left[sum_{nge 0}left(frac{x^{2n}}{n+1}+frac{x^{2n+2}}{n+1}right)+2ln xright]dx\=-2left[sum_{nge 0}left(frac{x^{2n+1}}{(n+1)(2n+1)}+frac{x^{2n+3}}{(n+1)(2n+3)}right)+2xln x-2xright]_0^1\=-2left[sum_{nge 0}left(frac{4}{(2n+1)(2n+3)}right)-2right],$$which vanishes by partial fractions.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143523%2fproving-int-0-infty-log-left-1-2-frac-cos-2-thetax2-frac1x4-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We start off by some $xrightarrow frac{1}{x}$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dxoverset{xrightarrow frac{1}{x}}=int_0^infty frac{ln(1- 2cos(2theta) x^2 +x^4)}{x^2}dx$$
$$I'(theta)=4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dxoverset{xrightarrow frac{1}{x}}=4int_0^infty frac{sin(2theta)x^2}{x^4-2cos(2theta)x^2+1}dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty frac{sin(2theta)(1+x^2)}{x^4-2cos(2theta)x^2+1}dx=4int_0^infty frac{sin(2theta)left(frac{1}{x^2}+1right)}{x^2+frac{1}{x^2}-2cos(2theta)}dx$$
$$Rightarrow I'(theta)=2int_0^infty frac{sin(2theta)left(x-frac{1}{x}right)'}{left(x-frac{1}{x}right)^2 +2(1-cos(2theta))}dxoverset{large x- frac{1}{x}=t}=2int_{-infty}^infty frac{sin(2theta)}{t^2 +4sin^2 (theta)}dt$$
$$=2 frac{sin(2theta)}{2sin(theta)}arctanleft(frac{t}{2sin(theta)}right)bigg|_{-infty}^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxed{I(theta)=2pisin(theta)}$$
$endgroup$
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
1
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
|
show 3 more comments
$begingroup$
We start off by some $xrightarrow frac{1}{x}$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dxoverset{xrightarrow frac{1}{x}}=int_0^infty frac{ln(1- 2cos(2theta) x^2 +x^4)}{x^2}dx$$
$$I'(theta)=4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dxoverset{xrightarrow frac{1}{x}}=4int_0^infty frac{sin(2theta)x^2}{x^4-2cos(2theta)x^2+1}dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty frac{sin(2theta)(1+x^2)}{x^4-2cos(2theta)x^2+1}dx=4int_0^infty frac{sin(2theta)left(frac{1}{x^2}+1right)}{x^2+frac{1}{x^2}-2cos(2theta)}dx$$
$$Rightarrow I'(theta)=2int_0^infty frac{sin(2theta)left(x-frac{1}{x}right)'}{left(x-frac{1}{x}right)^2 +2(1-cos(2theta))}dxoverset{large x- frac{1}{x}=t}=2int_{-infty}^infty frac{sin(2theta)}{t^2 +4sin^2 (theta)}dt$$
$$=2 frac{sin(2theta)}{2sin(theta)}arctanleft(frac{t}{2sin(theta)}right)bigg|_{-infty}^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxed{I(theta)=2pisin(theta)}$$
$endgroup$
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
1
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
|
show 3 more comments
$begingroup$
We start off by some $xrightarrow frac{1}{x}$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dxoverset{xrightarrow frac{1}{x}}=int_0^infty frac{ln(1- 2cos(2theta) x^2 +x^4)}{x^2}dx$$
$$I'(theta)=4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dxoverset{xrightarrow frac{1}{x}}=4int_0^infty frac{sin(2theta)x^2}{x^4-2cos(2theta)x^2+1}dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty frac{sin(2theta)(1+x^2)}{x^4-2cos(2theta)x^2+1}dx=4int_0^infty frac{sin(2theta)left(frac{1}{x^2}+1right)}{x^2+frac{1}{x^2}-2cos(2theta)}dx$$
$$Rightarrow I'(theta)=2int_0^infty frac{sin(2theta)left(x-frac{1}{x}right)'}{left(x-frac{1}{x}right)^2 +2(1-cos(2theta))}dxoverset{large x- frac{1}{x}=t}=2int_{-infty}^infty frac{sin(2theta)}{t^2 +4sin^2 (theta)}dt$$
$$=2 frac{sin(2theta)}{2sin(theta)}arctanleft(frac{t}{2sin(theta)}right)bigg|_{-infty}^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxed{I(theta)=2pisin(theta)}$$
$endgroup$
We start off by some $xrightarrow frac{1}{x}$ substitutions while derivating under the integral sign: $$I(theta)=int_0^infty log left(1-2frac{cos 2theta}{x^2}+frac{1}{x^4} right)dxoverset{xrightarrow frac{1}{x}}=int_0^infty frac{ln(1- 2cos(2theta) x^2 +x^4)}{x^2}dx$$
$$I'(theta)=4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dxoverset{xrightarrow frac{1}{x}}=4int_0^infty frac{sin(2theta)x^2}{x^4-2cos(2theta)x^2+1}dx$$
Now summing up the two integrals from above gives us:
$$Rightarrow 2I'(theta)=4int_0^infty frac{sin(2theta)(1+x^2)}{x^4-2cos(2theta)x^2+1}dx=4int_0^infty frac{sin(2theta)left(frac{1}{x^2}+1right)}{x^2+frac{1}{x^2}-2cos(2theta)}dx$$
$$Rightarrow I'(theta)=2int_0^infty frac{sin(2theta)left(x-frac{1}{x}right)'}{left(x-frac{1}{x}right)^2 +2(1-cos(2theta))}dxoverset{large x- frac{1}{x}=t}=2int_{-infty}^infty frac{sin(2theta)}{t^2 +4sin^2 (theta)}dt$$
$$=2 frac{sin(2theta)}{2sin(theta)}arctanleft(frac{t}{2sin(theta)}right)bigg|_{-infty}^infty=2cos(theta) cdot pi$$
$$Rightarrow I(theta) = 2pi int cos(theta) dtheta =2pi sin theta +C$$
But $I(0)=0$ (see J.G. answer), thus:$$I(0)=0+CRightarrow C=0 Rightarrow boxed{I(theta)=2pisin(theta)}$$
edited Mar 11 at 11:23
answered Mar 11 at 11:01
ZackyZacky
7,76011061
7,76011061
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
1
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
|
show 3 more comments
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
1
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Nice idea! But how to deal with $I'(0)$?
$endgroup$
– Zero
Mar 11 at 12:50
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Well, just plugg $theta =0$ here: $$4int_0^infty frac{sin(2theta)}{x^4-2cos(2theta)x^2+1}dx$$
$endgroup$
– Zacky
Mar 11 at 13:02
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Sorry, I didn't understand. I thought if $theta=0$, it equals to $4int_0^infty frac{0}{(x^2-1)^2}dx$ , which is not integrable. Did I miss something?
$endgroup$
– Zero
Mar 12 at 0:27
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
$begingroup$
Wait, why doesn't it vanish after plugging $theta=0$?
$endgroup$
– Zacky
Mar 12 at 12:24
1
1
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
$begingroup$
Well, I found a method to avoid this problem. It's certain that $I'(theta)=2pi costheta$ for $theta in (0,2pi)$. Thus $I(theta)=2 pi sin theta+C$ for $theta in (0,2pi)$. Considering that $I(theta)$ is a continuous function on $[0,2pi]$, thus $I(theta)=2 pi sin theta+C$ for $theta in [0,2pi]$. Then from $I(0)=0$ we can arrive at the conclusion. I didn't understand what "plugging" means, maybe all I said is an obvious thing.
$endgroup$
– Zero
yesterday
|
show 3 more comments
$begingroup$
For $theta in [0;pi]$,
begin{align}
J(theta)&=int_0^infty lnleft(1-frac{2cos(2theta)}{x^2}+frac{1}{x^4}right) ,dx
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}
J(theta)&=int_0^infty frac{lnleft(1-2cos(2theta)x^2+x^4right)}{x^2} ,dx
end{align}
For $ageq -1$, define the function $F$ by,
begin{align}F(a)&=int_0^infty frac{lnleft(1+2ax^2+x^4right)}{x^2} ,dx\
&=left[-frac{lnleft(1+2ax^2+x^4right)}{x}right]_0^infty+int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
&=int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}F(a)&=int_0^infty frac{4left( frac{1}{x^2}+aright) }{x^2left(1+frac{2a}{x^2}+frac{1}{x^4}right) } ,dx\
&=int_0^infty frac{4left( 1+ax^2right) }{x^4+2ax^2+1 } ,dx\
end{align}
Therefore,
begin{align}F(a)&=int_0^infty frac{2(a+1)left( 1+x^2right) }{x^4+2ax^2+1 } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{x^2+frac{1}{x^2}+2a } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{left(x-frac{1}{x}right)^2+2(a+1) } ,dx\
end{align}
Perform the change of variable $y=x-dfrac{1}{x}$,
begin{align}F(a)&= 2(a+1)int_{-infty}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=4(a+1)int_{0}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=left[2sqrt{2(a+1)}arctanleft( frac{x}{sqrt{2(a+1)}} right)right]_0^infty\
&=boxed{pisqrt{2(1+a)}}
end{align}
Observe that, $J(theta)=Fbig(-cos(2theta)big)$.
begin{align} 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
end{align}
Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt{2(1-cos(2theta))}=2sin(theta)$
Therefore,
begin{align}boxed{J(theta)=2pi sin(theta)}end{align}
$endgroup$
add a comment |
$begingroup$
For $theta in [0;pi]$,
begin{align}
J(theta)&=int_0^infty lnleft(1-frac{2cos(2theta)}{x^2}+frac{1}{x^4}right) ,dx
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}
J(theta)&=int_0^infty frac{lnleft(1-2cos(2theta)x^2+x^4right)}{x^2} ,dx
end{align}
For $ageq -1$, define the function $F$ by,
begin{align}F(a)&=int_0^infty frac{lnleft(1+2ax^2+x^4right)}{x^2} ,dx\
&=left[-frac{lnleft(1+2ax^2+x^4right)}{x}right]_0^infty+int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
&=int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}F(a)&=int_0^infty frac{4left( frac{1}{x^2}+aright) }{x^2left(1+frac{2a}{x^2}+frac{1}{x^4}right) } ,dx\
&=int_0^infty frac{4left( 1+ax^2right) }{x^4+2ax^2+1 } ,dx\
end{align}
Therefore,
begin{align}F(a)&=int_0^infty frac{2(a+1)left( 1+x^2right) }{x^4+2ax^2+1 } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{x^2+frac{1}{x^2}+2a } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{left(x-frac{1}{x}right)^2+2(a+1) } ,dx\
end{align}
Perform the change of variable $y=x-dfrac{1}{x}$,
begin{align}F(a)&= 2(a+1)int_{-infty}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=4(a+1)int_{0}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=left[2sqrt{2(a+1)}arctanleft( frac{x}{sqrt{2(a+1)}} right)right]_0^infty\
&=boxed{pisqrt{2(1+a)}}
end{align}
Observe that, $J(theta)=Fbig(-cos(2theta)big)$.
begin{align} 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
end{align}
Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt{2(1-cos(2theta))}=2sin(theta)$
Therefore,
begin{align}boxed{J(theta)=2pi sin(theta)}end{align}
$endgroup$
add a comment |
$begingroup$
For $theta in [0;pi]$,
begin{align}
J(theta)&=int_0^infty lnleft(1-frac{2cos(2theta)}{x^2}+frac{1}{x^4}right) ,dx
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}
J(theta)&=int_0^infty frac{lnleft(1-2cos(2theta)x^2+x^4right)}{x^2} ,dx
end{align}
For $ageq -1$, define the function $F$ by,
begin{align}F(a)&=int_0^infty frac{lnleft(1+2ax^2+x^4right)}{x^2} ,dx\
&=left[-frac{lnleft(1+2ax^2+x^4right)}{x}right]_0^infty+int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
&=int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}F(a)&=int_0^infty frac{4left( frac{1}{x^2}+aright) }{x^2left(1+frac{2a}{x^2}+frac{1}{x^4}right) } ,dx\
&=int_0^infty frac{4left( 1+ax^2right) }{x^4+2ax^2+1 } ,dx\
end{align}
Therefore,
begin{align}F(a)&=int_0^infty frac{2(a+1)left( 1+x^2right) }{x^4+2ax^2+1 } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{x^2+frac{1}{x^2}+2a } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{left(x-frac{1}{x}right)^2+2(a+1) } ,dx\
end{align}
Perform the change of variable $y=x-dfrac{1}{x}$,
begin{align}F(a)&= 2(a+1)int_{-infty}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=4(a+1)int_{0}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=left[2sqrt{2(a+1)}arctanleft( frac{x}{sqrt{2(a+1)}} right)right]_0^infty\
&=boxed{pisqrt{2(1+a)}}
end{align}
Observe that, $J(theta)=Fbig(-cos(2theta)big)$.
begin{align} 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
end{align}
Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt{2(1-cos(2theta))}=2sin(theta)$
Therefore,
begin{align}boxed{J(theta)=2pi sin(theta)}end{align}
$endgroup$
For $theta in [0;pi]$,
begin{align}
J(theta)&=int_0^infty lnleft(1-frac{2cos(2theta)}{x^2}+frac{1}{x^4}right) ,dx
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}
J(theta)&=int_0^infty frac{lnleft(1-2cos(2theta)x^2+x^4right)}{x^2} ,dx
end{align}
For $ageq -1$, define the function $F$ by,
begin{align}F(a)&=int_0^infty frac{lnleft(1+2ax^2+x^4right)}{x^2} ,dx\
&=left[-frac{lnleft(1+2ax^2+x^4right)}{x}right]_0^infty+int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
&=int_0^infty frac{4left(x^2+aright)}{1+2ax^2+x^4},dx\
end{align}
Perform the change of variable $y=dfrac{1}{x}$,
begin{align}F(a)&=int_0^infty frac{4left( frac{1}{x^2}+aright) }{x^2left(1+frac{2a}{x^2}+frac{1}{x^4}right) } ,dx\
&=int_0^infty frac{4left( 1+ax^2right) }{x^4+2ax^2+1 } ,dx\
end{align}
Therefore,
begin{align}F(a)&=int_0^infty frac{2(a+1)left( 1+x^2right) }{x^4+2ax^2+1 } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{x^2+frac{1}{x^2}+2a } ,dx\
&=2(a+1)int_0^infty frac{left(1+frac{1}{x^2}right)}{left(x-frac{1}{x}right)^2+2(a+1) } ,dx\
end{align}
Perform the change of variable $y=x-dfrac{1}{x}$,
begin{align}F(a)&= 2(a+1)int_{-infty}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=4(a+1)int_{0}^{+infty}frac{1}{x^2+2(a+1)},dx\
&=left[2sqrt{2(a+1)}arctanleft( frac{x}{sqrt{2(a+1)}} right)right]_0^infty\
&=boxed{pisqrt{2(1+a)}}
end{align}
Observe that, $J(theta)=Fbig(-cos(2theta)big)$.
begin{align} 2(1-cos(2theta))&=2(1-cos^2(theta)+sin^2 (theta))\
&=2times 2sin^2 (theta)\
&=4times sin^2 (theta)\
end{align}
Since, for $theta in [0;pi],sin(theta)geq 0$ then $sqrt{2(1-cos(2theta))}=2sin(theta)$
Therefore,
begin{align}boxed{J(theta)=2pi sin(theta)}end{align}
answered Mar 11 at 19:49
FDPFDP
6,17211829
6,17211829
add a comment |
add a comment |
$begingroup$
To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac{1}{x}$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^{-2}|dx=2int_0^1left[(1+frac{1}{x^2})ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_{nge 0}frac{x^{2n}}{n+1}+2ln xright]dx=-2int_0^1left[sum_{nge 0}left(frac{x^{2n}}{n+1}+frac{x^{2n+2}}{n+1}right)+2ln xright]dx\=-2left[sum_{nge 0}left(frac{x^{2n+1}}{(n+1)(2n+1)}+frac{x^{2n+3}}{(n+1)(2n+3)}right)+2xln x-2xright]_0^1\=-2left[sum_{nge 0}left(frac{4}{(2n+1)(2n+3)}right)-2right],$$which vanishes by partial fractions.
$endgroup$
add a comment |
$begingroup$
To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac{1}{x}$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^{-2}|dx=2int_0^1left[(1+frac{1}{x^2})ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_{nge 0}frac{x^{2n}}{n+1}+2ln xright]dx=-2int_0^1left[sum_{nge 0}left(frac{x^{2n}}{n+1}+frac{x^{2n+2}}{n+1}right)+2ln xright]dx\=-2left[sum_{nge 0}left(frac{x^{2n+1}}{(n+1)(2n+1)}+frac{x^{2n+3}}{(n+1)(2n+3)}right)+2xln x-2xright]_0^1\=-2left[sum_{nge 0}left(frac{4}{(2n+1)(2n+3)}right)-2right],$$which vanishes by partial fractions.
$endgroup$
add a comment |
$begingroup$
To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac{1}{x}$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^{-2}|dx=2int_0^1left[(1+frac{1}{x^2})ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_{nge 0}frac{x^{2n}}{n+1}+2ln xright]dx=-2int_0^1left[sum_{nge 0}left(frac{x^{2n}}{n+1}+frac{x^{2n+2}}{n+1}right)+2ln xright]dx\=-2left[sum_{nge 0}left(frac{x^{2n+1}}{(n+1)(2n+1)}+frac{x^{2n+3}}{(n+1)(2n+3)}right)+2xln x-2xright]_0^1\=-2left[sum_{nge 0}left(frac{4}{(2n+1)(2n+3)}right)-2right],$$which vanishes by partial fractions.
$endgroup$
To complement Zacky's answer I'll add a proof that $I(0)=0$. Applying $xmapstofrac{1}{x}$ for $xge 1$ gives $$I(x)=2int_0^inftyln|1-x^{-2}|dx=2int_0^1left[(1+frac{1}{x^2})ln(1-x^2)-2ln xright]\=-2int_0^1left[(1+x^2)sum_{nge 0}frac{x^{2n}}{n+1}+2ln xright]dx=-2int_0^1left[sum_{nge 0}left(frac{x^{2n}}{n+1}+frac{x^{2n+2}}{n+1}right)+2ln xright]dx\=-2left[sum_{nge 0}left(frac{x^{2n+1}}{(n+1)(2n+1)}+frac{x^{2n+3}}{(n+1)(2n+3)}right)+2xln x-2xright]_0^1\=-2left[sum_{nge 0}left(frac{4}{(2n+1)(2n+3)}right)-2right],$$which vanishes by partial fractions.
answered Mar 11 at 11:08
J.G.J.G.
30.3k23148
30.3k23148
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3143523%2fproving-int-0-infty-log-left-1-2-frac-cos-2-thetax2-frac1x4-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Maybe you can complete a square and make a substitution afterwards.
$endgroup$
– mathreadler
Mar 11 at 10:30
1
$begingroup$
I am not sure about a relationship between them, but both of them can be solved by similar tehniques (Feynman's trick).
$endgroup$
– Zacky
Mar 11 at 11:11