Definition A.3.1.5 of Higher Topos TheorySimplicially enriched cartesian closed categoriesFibered/cofibered...



Definition A.3.1.5 of Higher Topos Theory


Simplicially enriched cartesian closed categoriesFibered/cofibered higher categories, relative model structures, slicing, and (∞,2)-category theoryWhat are the higher morphisms between enriched higher categories?Equivalences of Internal CategoriesThe state of the art in the rectification of homotopy-coherent structuresA model category of abelian categories?Is the theory of weak $n$-categories a cofibrant replacement of the theory of strict ones?The category theory of Span-enriched categories / 2-Segal spacesExcellent monoidal model categories admit enriched fibrant replacement functors?About a canonical model structure on topologically enriched categoriesTheorem 2.1.2.2 Higher Topos Theory













3












$begingroup$


I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?










share|cite|improve this question









New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09


















3












$begingroup$


I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?










share|cite|improve this question









New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09
















3












3








3





$begingroup$


I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?










share|cite|improve this question









New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.




So, what does a model structure on a $mathbf{S}$-enriched category mean?




Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?







higher-category-theory model-categories






share|cite|improve this question









New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Mar 11 at 8:58









Francesco Polizzi

48.2k3128210




48.2k3128210






New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Mar 11 at 8:40









Frank KongFrank Kong

385




385




New contributor




Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Frank Kong is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09




















  • $begingroup$
    I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
    $endgroup$
    – Denis Nardin
    Mar 11 at 9:09


















$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
Mar 11 at 9:09






$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
Mar 11 at 9:09












1 Answer
1






active

oldest

votes


















5












$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325158%2fdefinition-a-3-1-5-of-higher-topos-theory%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04
















5












$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04














5












5








5





$begingroup$

Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.






share|cite|improve this answer









$endgroup$



Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$

You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.



Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 11 at 9:15









Stefano AriottaStefano Ariotta

33148




33148








  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04














  • 1




    $begingroup$
    Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
    $endgroup$
    – Theo Johnson-Freyd
    Mar 11 at 11:22










  • $begingroup$
    Thanks for your help!
    $endgroup$
    – Frank Kong
    Mar 11 at 12:04








1




1




$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
Mar 11 at 11:22




$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
Mar 11 at 11:22












$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
Mar 11 at 12:04




$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
Mar 11 at 12:04










Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.













Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.












Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325158%2fdefinition-a-3-1-5-of-higher-topos-theory%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Magento 2 - Add success message with knockout Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Success / Error message on ajax request$.widget is not a function when loading a homepage after add custom jQuery on custom themeHow can bind jQuery to current document in Magento 2 When template load by ajaxRedirect page using plugin in Magento 2Magento 2 - Update quantity and totals of cart page without page reload?Magento 2: Quote data not loaded on knockout checkoutMagento 2 : I need to change add to cart success message after adding product into cart through pluginMagento 2.2.5 How to add additional products to cart from new checkout step?Magento 2 Add error/success message with knockoutCan't validate Post Code on checkout page

Fil:Tokke komm.svg

Where did Arya get these scars? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why did Arya refuse to end it?Has the pronunciation of Arya Stark's name changed?Has Arya forgiven people?Why did Arya Stark lose her vision?Why can Arya still use the faces?Has the Narrow Sea become narrower?Does Arya Stark know how to make poisons outside of the House of Black and White?Why did Nymeria leave Arya?Why did Arya not kill the Lannister soldiers she encountered in the Riverlands?What is the current canonical age of Sansa, Bran and Arya Stark?