Calculate $lim_{x rightarrow 0} frac{e^{x}-x-1}{1-cos x}$ Announcing the arrival of Valued...
By what mechanism was the 2017 UK General Election called?
Vertical ranges of Column Plots in 12
Short story about astronauts fertilizing soil with their own bodies
What is the proper term for etching or digging of wall to hide conduit of cables
calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle
What was the last profitable war?
Calculation of line of sight system gain
How does the body cool itself in a stillsuit?
Is this Half-dragon Quaggoth boss monster balanced?
Table formatting with tabularx?
Random body shuffle every night—can we still function?
Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?
Where and when has Thucydides been studied?
malloc in main() or malloc in another function: allocating memory for a struct and its members
What is a more techy Technical Writer job title that isn't cutesy or confusing?
Is a copyright notice with a non-existent name be invalid?
How to achieve cat-like agility?
Was the pager message from Nick Fury to Captain Marvel unnecessary?
Why not use the yoke to control yaw, as well as pitch and roll?
Did pre-Columbian Americans know the spherical shape of the Earth?
One-one communication
Any stored/leased 737s that could substitute for grounded MAXs?
Why does BitLocker not use RSA?
Can gravitational waves pass through a black hole?
Calculate $lim_{x rightarrow 0} frac{e^{x}-x-1}{1-cos x}$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Are all limits solvable without L'Hôpital Rule or Series ExpansionEvery positive rational number $x$ can be expressed in the form $sum_{k=1}^n frac{a_k}{k!}$ with $ a_k≤ k − 1$ for $k ≥ 2$ .Evaluate $displaystylelim_{x rightarrow 0} frac{(1-cos x)^2}{log (1 + sin^4x)} $Calculate the limit as $xto0$Taylor's theorem with remainder of fractional order?$lim_{xrightarrow 0^+}frac{(1+cos x)}{(e^x-1)}= infty$ using l'HopitalComputing $lim_{n rightarrow infty} int_{0}^{pi/3} frac{sin^{n}x}{sin^{n}x+cos^{n}x}dx$ using Dominated Convergence TheoremLet $f:Imapsto mathbb{R}$, find the Taylor's polynomial with Peano Remainder of order $3$ centered at $0$. Use $f(x)=sqrt{x+1}$Understanding the motivation for the answer in Generalizing ODEs to Banach SpacesHow to deduce the last inequality ;(Calculate $ lim_{x to 1^{+}} frac{x-1- ln x }{(ln x) (x-1)}$
$begingroup$
I know how to do this task and my answer is $1$.
However I think that my way is a long way to the goal and I want to try do this task using Taylor's theorem with the rest in the form of Peano.
Unfortunately I do not fully understand how I can do it.
Can you help me?
real-analysis
$endgroup$
add a comment |
$begingroup$
I know how to do this task and my answer is $1$.
However I think that my way is a long way to the goal and I want to try do this task using Taylor's theorem with the rest in the form of Peano.
Unfortunately I do not fully understand how I can do it.
Can you help me?
real-analysis
$endgroup$
add a comment |
$begingroup$
I know how to do this task and my answer is $1$.
However I think that my way is a long way to the goal and I want to try do this task using Taylor's theorem with the rest in the form of Peano.
Unfortunately I do not fully understand how I can do it.
Can you help me?
real-analysis
$endgroup$
I know how to do this task and my answer is $1$.
However I think that my way is a long way to the goal and I want to try do this task using Taylor's theorem with the rest in the form of Peano.
Unfortunately I do not fully understand how I can do it.
Can you help me?
real-analysis
real-analysis
edited Mar 26 at 10:10
Ernie060
2,950719
2,950719
asked Mar 26 at 10:04
MP3129MP3129
900211
900211
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Using
$e^x = 1+x+frac{x^2}{2} + o(x^2)$ and- $cos x = 1 - frac{x^2}{2} + o(x^2)$
you get
$$frac{e^{x}-x-1}{1-cos x} = frac{frac{x^2}{2} + o(x^2)}{frac{x^2}{2} + o(x^2)}stackrel{x to 0}{longrightarrow}1$$
$endgroup$
add a comment |
$begingroup$
Using expansions up to order $2$:
$$lim_{xto 0} frac{e^x-x-1}{1-cos x} = lim_{x to 0}frac{1+x+x^2/2+o(x^2)-x-1}{1-1+x^2/2+o(x^2)} = lim_{x to 0} frac{1/2+o(x^2)/x^2}{1/2+o(x^2)/x^2} = 1. $$
$endgroup$
add a comment |
$begingroup$
The simpest way is to apply L'Hopital's Rule twice.
$endgroup$
add a comment |
$begingroup$
Using l'Hospital: $$lim_{xrightarrow 0}frac{exp(x)-x-1}{1-cos(x)}=lim_{xrightarrow 0}frac{exp(x)-1}{sin(x)}=lim_{xrightarrow 0}frac{exp(x)}{cos(x)}=frac{exp(0)}{cos(0)}=1.$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xto0}dfrac{e^x-1-x}{1-cos x}=lim_{xto0}dfrac{e^x-1-x}{x^2}lim_{xto0}left(dfrac x{sin x}right)^2lim_{xto0}(1+cos x)$$
For the first limit use Are all limits solvable without L'Hôpital Rule or Series Expansion
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162970%2fcalculate-lim-x-rightarrow-0-fracex-x-11-cos-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using
$e^x = 1+x+frac{x^2}{2} + o(x^2)$ and- $cos x = 1 - frac{x^2}{2} + o(x^2)$
you get
$$frac{e^{x}-x-1}{1-cos x} = frac{frac{x^2}{2} + o(x^2)}{frac{x^2}{2} + o(x^2)}stackrel{x to 0}{longrightarrow}1$$
$endgroup$
add a comment |
$begingroup$
Using
$e^x = 1+x+frac{x^2}{2} + o(x^2)$ and- $cos x = 1 - frac{x^2}{2} + o(x^2)$
you get
$$frac{e^{x}-x-1}{1-cos x} = frac{frac{x^2}{2} + o(x^2)}{frac{x^2}{2} + o(x^2)}stackrel{x to 0}{longrightarrow}1$$
$endgroup$
add a comment |
$begingroup$
Using
$e^x = 1+x+frac{x^2}{2} + o(x^2)$ and- $cos x = 1 - frac{x^2}{2} + o(x^2)$
you get
$$frac{e^{x}-x-1}{1-cos x} = frac{frac{x^2}{2} + o(x^2)}{frac{x^2}{2} + o(x^2)}stackrel{x to 0}{longrightarrow}1$$
$endgroup$
Using
$e^x = 1+x+frac{x^2}{2} + o(x^2)$ and- $cos x = 1 - frac{x^2}{2} + o(x^2)$
you get
$$frac{e^{x}-x-1}{1-cos x} = frac{frac{x^2}{2} + o(x^2)}{frac{x^2}{2} + o(x^2)}stackrel{x to 0}{longrightarrow}1$$
answered Mar 26 at 10:10
trancelocationtrancelocation
14.5k1929
14.5k1929
add a comment |
add a comment |
$begingroup$
Using expansions up to order $2$:
$$lim_{xto 0} frac{e^x-x-1}{1-cos x} = lim_{x to 0}frac{1+x+x^2/2+o(x^2)-x-1}{1-1+x^2/2+o(x^2)} = lim_{x to 0} frac{1/2+o(x^2)/x^2}{1/2+o(x^2)/x^2} = 1. $$
$endgroup$
add a comment |
$begingroup$
Using expansions up to order $2$:
$$lim_{xto 0} frac{e^x-x-1}{1-cos x} = lim_{x to 0}frac{1+x+x^2/2+o(x^2)-x-1}{1-1+x^2/2+o(x^2)} = lim_{x to 0} frac{1/2+o(x^2)/x^2}{1/2+o(x^2)/x^2} = 1. $$
$endgroup$
add a comment |
$begingroup$
Using expansions up to order $2$:
$$lim_{xto 0} frac{e^x-x-1}{1-cos x} = lim_{x to 0}frac{1+x+x^2/2+o(x^2)-x-1}{1-1+x^2/2+o(x^2)} = lim_{x to 0} frac{1/2+o(x^2)/x^2}{1/2+o(x^2)/x^2} = 1. $$
$endgroup$
Using expansions up to order $2$:
$$lim_{xto 0} frac{e^x-x-1}{1-cos x} = lim_{x to 0}frac{1+x+x^2/2+o(x^2)-x-1}{1-1+x^2/2+o(x^2)} = lim_{x to 0} frac{1/2+o(x^2)/x^2}{1/2+o(x^2)/x^2} = 1. $$
answered Mar 26 at 10:10
GibbsGibbs
5,4323927
5,4323927
add a comment |
add a comment |
$begingroup$
The simpest way is to apply L'Hopital's Rule twice.
$endgroup$
add a comment |
$begingroup$
The simpest way is to apply L'Hopital's Rule twice.
$endgroup$
add a comment |
$begingroup$
The simpest way is to apply L'Hopital's Rule twice.
$endgroup$
The simpest way is to apply L'Hopital's Rule twice.
answered Mar 26 at 10:06
Kavi Rama MurthyKavi Rama Murthy
76.6k53471
76.6k53471
add a comment |
add a comment |
$begingroup$
Using l'Hospital: $$lim_{xrightarrow 0}frac{exp(x)-x-1}{1-cos(x)}=lim_{xrightarrow 0}frac{exp(x)-1}{sin(x)}=lim_{xrightarrow 0}frac{exp(x)}{cos(x)}=frac{exp(0)}{cos(0)}=1.$$
$endgroup$
add a comment |
$begingroup$
Using l'Hospital: $$lim_{xrightarrow 0}frac{exp(x)-x-1}{1-cos(x)}=lim_{xrightarrow 0}frac{exp(x)-1}{sin(x)}=lim_{xrightarrow 0}frac{exp(x)}{cos(x)}=frac{exp(0)}{cos(0)}=1.$$
$endgroup$
add a comment |
$begingroup$
Using l'Hospital: $$lim_{xrightarrow 0}frac{exp(x)-x-1}{1-cos(x)}=lim_{xrightarrow 0}frac{exp(x)-1}{sin(x)}=lim_{xrightarrow 0}frac{exp(x)}{cos(x)}=frac{exp(0)}{cos(0)}=1.$$
$endgroup$
Using l'Hospital: $$lim_{xrightarrow 0}frac{exp(x)-x-1}{1-cos(x)}=lim_{xrightarrow 0}frac{exp(x)-1}{sin(x)}=lim_{xrightarrow 0}frac{exp(x)}{cos(x)}=frac{exp(0)}{cos(0)}=1.$$
answered Mar 26 at 10:08
st.mathst.math
1,278115
1,278115
add a comment |
add a comment |
$begingroup$
$$lim_{xto0}dfrac{e^x-1-x}{1-cos x}=lim_{xto0}dfrac{e^x-1-x}{x^2}lim_{xto0}left(dfrac x{sin x}right)^2lim_{xto0}(1+cos x)$$
For the first limit use Are all limits solvable without L'Hôpital Rule or Series Expansion
$endgroup$
add a comment |
$begingroup$
$$lim_{xto0}dfrac{e^x-1-x}{1-cos x}=lim_{xto0}dfrac{e^x-1-x}{x^2}lim_{xto0}left(dfrac x{sin x}right)^2lim_{xto0}(1+cos x)$$
For the first limit use Are all limits solvable without L'Hôpital Rule or Series Expansion
$endgroup$
add a comment |
$begingroup$
$$lim_{xto0}dfrac{e^x-1-x}{1-cos x}=lim_{xto0}dfrac{e^x-1-x}{x^2}lim_{xto0}left(dfrac x{sin x}right)^2lim_{xto0}(1+cos x)$$
For the first limit use Are all limits solvable without L'Hôpital Rule or Series Expansion
$endgroup$
$$lim_{xto0}dfrac{e^x-1-x}{1-cos x}=lim_{xto0}dfrac{e^x-1-x}{x^2}lim_{xto0}left(dfrac x{sin x}right)^2lim_{xto0}(1+cos x)$$
For the first limit use Are all limits solvable without L'Hôpital Rule or Series Expansion
answered Mar 26 at 10:11
lab bhattacharjeelab bhattacharjee
229k15159279
229k15159279
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162970%2fcalculate-lim-x-rightarrow-0-fracex-x-11-cos-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown