Evaluate $limlimits_{xto 0^{+}}(ln(x)-ln(sin x))$ Announcing the arrival of Valued Associate...

What is a more techy Technical Writer job title that isn't cutesy or confusing?

Marquee sign letters

Any stored/leased 737s that could substitute for grounded MAXs?

Why complex landing gears are used instead of simple, reliable and light weight muscle wire or shape memory alloys?

Vertical ranges of Column Plots in 12

New Order #6: Easter Egg

Is this Half-dragon Quaggoth boss monster balanced?

Keep at all times, the minus sign above aligned with minus sign below

How to name indistinguishable henchmen in a screenplay?

Twin's vs. Twins'

Diophantine equation 3^a+1=3^b+5^c

How to make an animal which can only breed for a certain number of generations?

Besides transaction validation, are there any other uses of the Script language in Bitcoin

malloc in main() or malloc in another function: allocating memory for a struct and its members

Is there a verb for listening stealthily?

Why do C and C++ allow the expression (int) + 4*5;

Determine whether an integer is a palindrome

Sally's older brother

The test team as an enemy of development? And how can this be avoided?

Meaning of 境 in その日を境に

In musical terms, what properties are varied by the human voice to produce different words / syllables?

3D Masyu - A Die

Can gravitational waves pass through a black hole?

How do you write "wild blueberries flavored"?



Evaluate $limlimits_{xto 0^{+}}(ln(x)-ln(sin x))$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How to prove that $limlimits_{xto0}frac{sin x}x=1$?L'Hopital's Rule with $lim limits_{x to infty}frac{2^x}{e^left(x^2right)}$How do I find $limlimits_{x to 0} xcot(6x) $ without using L'hopitals rule?Prove: $limlimits_{ntoinfty}frac{3^nsin{n^3}}{3^{n-1}+3n}=3$Evaluate $limlimits_{xtoinfty}x(frac{pi}{2}-arctan(x))$ without using L'HôpitalEvaluate $limlimits_{x to infty} sin(frac{1}{x})^x$Evaluate $limlimits frac{x-sinsincdotssin x}{x^3}.$Evaluate the following integral $limlimits_{xto 0}frac{1}{x}int_{0}^{x}sin^{2}left(frac{1}{u}right)du$Why doesn't L'hopitals Rule work for $limlimits_{x to infty} dfrac{x+ sin x}{x+ 2 sin x}$Compute $limlimits_{nto infty} n sqrt{2^{n-1}} cos^{n-1} alpha$Evaluate $limlimits_{xtoinfty}int^{2x}_{x}frac{1}{t}dt$












0












$begingroup$


Evaluate $limlimits_{xto 0^{+}}(ln(x)-ln(sin x))$



My trial



As $xto 0^{+},;ln(x)to infty$ and $ln(sin x)to infty.$ So,



begin{align}limlimits_{xto 0^{+}}(ln(x)-ln(sin x))=limlimits_{xto 0^{+}}lnleft(frac{x}{sin x}right)end{align}



This should result to $infty$ but I may be wrong. If I am wrong, how do I apply L'Hopital's rule to this?










share|cite|improve this question









$endgroup$












  • $begingroup$
    See math.stackexchange.com/questions/75130/…
    $endgroup$
    – Robert Z
    Mar 26 at 10:23










  • $begingroup$
    @Robert Z: Thanks a lot, I got that hint!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:26
















0












$begingroup$


Evaluate $limlimits_{xto 0^{+}}(ln(x)-ln(sin x))$



My trial



As $xto 0^{+},;ln(x)to infty$ and $ln(sin x)to infty.$ So,



begin{align}limlimits_{xto 0^{+}}(ln(x)-ln(sin x))=limlimits_{xto 0^{+}}lnleft(frac{x}{sin x}right)end{align}



This should result to $infty$ but I may be wrong. If I am wrong, how do I apply L'Hopital's rule to this?










share|cite|improve this question









$endgroup$












  • $begingroup$
    See math.stackexchange.com/questions/75130/…
    $endgroup$
    – Robert Z
    Mar 26 at 10:23










  • $begingroup$
    @Robert Z: Thanks a lot, I got that hint!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:26














0












0








0


2



$begingroup$


Evaluate $limlimits_{xto 0^{+}}(ln(x)-ln(sin x))$



My trial



As $xto 0^{+},;ln(x)to infty$ and $ln(sin x)to infty.$ So,



begin{align}limlimits_{xto 0^{+}}(ln(x)-ln(sin x))=limlimits_{xto 0^{+}}lnleft(frac{x}{sin x}right)end{align}



This should result to $infty$ but I may be wrong. If I am wrong, how do I apply L'Hopital's rule to this?










share|cite|improve this question









$endgroup$




Evaluate $limlimits_{xto 0^{+}}(ln(x)-ln(sin x))$



My trial



As $xto 0^{+},;ln(x)to infty$ and $ln(sin x)to infty.$ So,



begin{align}limlimits_{xto 0^{+}}(ln(x)-ln(sin x))=limlimits_{xto 0^{+}}lnleft(frac{x}{sin x}right)end{align}



This should result to $infty$ but I may be wrong. If I am wrong, how do I apply L'Hopital's rule to this?







calculus algebra-precalculus limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 26 at 10:21









Omojola MichealOmojola Micheal

2,082424




2,082424












  • $begingroup$
    See math.stackexchange.com/questions/75130/…
    $endgroup$
    – Robert Z
    Mar 26 at 10:23










  • $begingroup$
    @Robert Z: Thanks a lot, I got that hint!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:26


















  • $begingroup$
    See math.stackexchange.com/questions/75130/…
    $endgroup$
    – Robert Z
    Mar 26 at 10:23










  • $begingroup$
    @Robert Z: Thanks a lot, I got that hint!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:26
















$begingroup$
See math.stackexchange.com/questions/75130/…
$endgroup$
– Robert Z
Mar 26 at 10:23




$begingroup$
See math.stackexchange.com/questions/75130/…
$endgroup$
– Robert Z
Mar 26 at 10:23












$begingroup$
@Robert Z: Thanks a lot, I got that hint!
$endgroup$
– Omojola Micheal
Mar 26 at 10:26




$begingroup$
@Robert Z: Thanks a lot, I got that hint!
$endgroup$
– Omojola Micheal
Mar 26 at 10:26










2 Answers
2






active

oldest

votes


















5












$begingroup$

$ frac{x}{sin x} to 1$ as $x to 0$,



hence $ ln (frac{x}{sin x}) to ln 1=0$ as $x to 0.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Oh, thanks Fred!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:25



















2












$begingroup$

Hint:




  1. If $f$ is a continuous function and $lim_{xto a} g(x) = L$, then $lim_{xto a} f(g(x)) = f(L)$.


  2. $ln$ is continuous.


  3. $lim_{xto 0}frac{x}{sin x}$ is simple to calculate.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162994%2fevaluate-lim-limits-x-to-0-lnx-ln-sin-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    $ frac{x}{sin x} to 1$ as $x to 0$,



    hence $ ln (frac{x}{sin x}) to ln 1=0$ as $x to 0.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Oh, thanks Fred!
      $endgroup$
      – Omojola Micheal
      Mar 26 at 10:25
















    5












    $begingroup$

    $ frac{x}{sin x} to 1$ as $x to 0$,



    hence $ ln (frac{x}{sin x}) to ln 1=0$ as $x to 0.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Oh, thanks Fred!
      $endgroup$
      – Omojola Micheal
      Mar 26 at 10:25














    5












    5








    5





    $begingroup$

    $ frac{x}{sin x} to 1$ as $x to 0$,



    hence $ ln (frac{x}{sin x}) to ln 1=0$ as $x to 0.$






    share|cite|improve this answer









    $endgroup$



    $ frac{x}{sin x} to 1$ as $x to 0$,



    hence $ ln (frac{x}{sin x}) to ln 1=0$ as $x to 0.$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Mar 26 at 10:24









    FredFred

    48.6k11849




    48.6k11849












    • $begingroup$
      Oh, thanks Fred!
      $endgroup$
      – Omojola Micheal
      Mar 26 at 10:25


















    • $begingroup$
      Oh, thanks Fred!
      $endgroup$
      – Omojola Micheal
      Mar 26 at 10:25
















    $begingroup$
    Oh, thanks Fred!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:25




    $begingroup$
    Oh, thanks Fred!
    $endgroup$
    – Omojola Micheal
    Mar 26 at 10:25











    2












    $begingroup$

    Hint:




    1. If $f$ is a continuous function and $lim_{xto a} g(x) = L$, then $lim_{xto a} f(g(x)) = f(L)$.


    2. $ln$ is continuous.


    3. $lim_{xto 0}frac{x}{sin x}$ is simple to calculate.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Hint:




      1. If $f$ is a continuous function and $lim_{xto a} g(x) = L$, then $lim_{xto a} f(g(x)) = f(L)$.


      2. $ln$ is continuous.


      3. $lim_{xto 0}frac{x}{sin x}$ is simple to calculate.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Hint:




        1. If $f$ is a continuous function and $lim_{xto a} g(x) = L$, then $lim_{xto a} f(g(x)) = f(L)$.


        2. $ln$ is continuous.


        3. $lim_{xto 0}frac{x}{sin x}$ is simple to calculate.






        share|cite|improve this answer









        $endgroup$



        Hint:




        1. If $f$ is a continuous function and $lim_{xto a} g(x) = L$, then $lim_{xto a} f(g(x)) = f(L)$.


        2. $ln$ is continuous.


        3. $lim_{xto 0}frac{x}{sin x}$ is simple to calculate.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 26 at 10:26









        5xum5xum

        92.9k395162




        92.9k395162






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162994%2fevaluate-lim-limits-x-to-0-lnx-ln-sin-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Nidaros erkebispedøme

            Birsay

            Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...