Hash table solution to twoSum The 2019 Stack Overflow Developer Survey Results Are In ...

How to read αἱμύλιος or when to aspirate

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

How to determine omitted units in a publication

Is there a writing software that you can sort scenes like slides in PowerPoint?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Did the new image of black hole confirm the general theory of relativity?

Intergalactic human space ship encounters another ship, character gets shunted off beyond known universe, reality starts collapsing

US Healthcare consultation for visitors

1960s short story making fun of James Bond-style spy fiction

Does Parliament hold absolute power in the UK?

Do warforged have souls?

What force causes entropy to increase?

Why can't devices on different VLANs, but on the same subnet, communicate?

How to handle characters who are more educated than the author?

What do I do when my TA workload is more than expected?

Can the DM override racial traits?

What information about me do stores get via my credit card?

Was credit for the black hole image misappropriated?

My body leaves; my core can stay

What can I do if neighbor is blocking my solar panels intentionally?

Can withdrawing asylum be illegal?

Didn't get enough time to take a Coding Test - what to do now?

Homework question about an engine pulling a train



Hash table solution to twoSum



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraA One-Pass Hash Table Solution to twoSumQuick Sum TopCoder (Brute Force solution)FindTwoSums using TupleLeetcode 15. 3 SumFind two values that add up to the sum3-Sum Problem in PythonTwo Sum LeetcodePython 3 two-sum performanceUnique character lookupLeetcode Two Sum code in PythonFaster code for leetcode reverse int





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







9












$begingroup$


I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], []).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return []


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?










share|improve this question











$endgroup$








  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    Mar 22 at 12:26


















9












$begingroup$


I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], []).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return []


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?










share|improve this question











$endgroup$








  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    Mar 22 at 12:26














9












9








9


1



$begingroup$


I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], []).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return []


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?










share|improve this question











$endgroup$




I try the most to solve a twoSum problem in leetcode




Given an array of integers, return indices of the two numbers such that they add up to a specific target.



You may assume that each input would have exactly one solution, and you may not use the same element twice.



Example:



Given nums = [2, 7, 11, 15], target = 9,



Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].




The plan:




  1. brute force to iterate len(nums) O(n)

  2. search for target - num[i] with a hash table O(1)


Implement



class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
nums_d = {}
for i in range(len(nums)):
nums_d.setdefault(nums[i], []).append(i)

for i in range(len(nums)):
sub_target = target - nums[i]
nums_d[nums[i]].pop(0) #remove the fixer
result = nums_d.get(sub_target)#hash table to search

if result:
return [i, result[0]]
return []


I strives hours for this solution but found that answer accepted but not passed Score 60.




Runtime: 60 ms, faster than 46.66% of Python3 online submissions for Two Sum.
Memory Usage: 16.1 MB, less than 5.08% of Python3 online submissions for Two Sum.




I want to refactor the codes so that to achieve at least faster than 60%.



Could you please provide hints?







python performance algorithm python-3.x k-sum






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 22 at 12:25









200_success

131k17157422




131k17157422










asked Mar 22 at 5:27









AliceAlice

3207




3207








  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    Mar 22 at 12:26














  • 1




    $begingroup$
    Take care not to misuse the term refactoring when you just mean rewriting.
    $endgroup$
    – 200_success
    Mar 22 at 12:26








1




1




$begingroup$
Take care not to misuse the term refactoring when you just mean rewriting.
$endgroup$
– 200_success
Mar 22 at 12:26




$begingroup$
Take care not to misuse the term refactoring when you just mean rewriting.
$endgroup$
– 200_success
Mar 22 at 12:26










2 Answers
2






active

oldest

votes


















8












$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], []).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], []).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    Mar 23 at 11:17






  • 2




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    Mar 23 at 16:28










  • $begingroup$
    $O(2n) = O(n).$
    $endgroup$
    – Solomon Ucko
    Mar 29 at 0:23





















0












$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$









  • 2




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    Mar 22 at 22:29












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    Mar 23 at 18:54










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    Mar 23 at 22:19












Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215975%2fhash-table-solution-to-twosum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









8












$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], []).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], []).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    Mar 23 at 11:17






  • 2




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    Mar 23 at 16:28










  • $begingroup$
    $O(2n) = O(n).$
    $endgroup$
    – Solomon Ucko
    Mar 29 at 0:23


















8












$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], []).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], []).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    Mar 23 at 11:17






  • 2




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    Mar 23 at 16:28










  • $begingroup$
    $O(2n) = O(n).$
    $endgroup$
    – Solomon Ucko
    Mar 29 at 0:23
















8












8








8





$begingroup$

First some stylistic points





  • nums_d.setdefault(nums[i], []).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], []).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i






share|improve this answer











$endgroup$



First some stylistic points





  • nums_d.setdefault(nums[i], []).append(i)



    The setdefault is unnecessary here, you can assign a list normally



    nums_d[nums[i]] = [i]



  • When you need both the index and the element use enumerate see PEP279




    nums_d = {}
    for i in range(len(nums)):
    nums_d.setdefault(nums[i], []).append(i)



    nums_d = {}
    for i, e in enumerate(nums):
    nums_d[e] = [i]



  • Use comprehension when possible (They use the C style looping and is considered to be faster)



    nums_d = { e: [i] for i, e  in enumerate(nums) }



Hint



You loop over nums twice, but this can be done in one loop! To make it O(n)



Whenever you visit a new element in nums ->



Check if it's sum complement is in nums_d, else add the target - element to the dictionary with the index as value t - e : i





nums_d = {}
for i, e in enumerate(nums):
if e in nums_d:
return [nums_d[e], i]
nums_d[target - e] = i







share|improve this answer














share|improve this answer



share|improve this answer








edited Mar 22 at 11:16









ielyamani

377214




377214










answered Mar 22 at 8:47









LudisposedLudisposed

9,14322268




9,14322268








  • 1




    $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    Mar 23 at 11:17






  • 2




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    Mar 23 at 16:28










  • $begingroup$
    $O(2n) = O(n).$
    $endgroup$
    – Solomon Ucko
    Mar 29 at 0:23
















  • 1




    $begingroup$
    Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
    $endgroup$
    – Graipher
    Mar 23 at 11:17






  • 2




    $begingroup$
    @Graipher True, a defaultdict might be more appropriate there.
    $endgroup$
    – Ludisposed
    Mar 23 at 16:28










  • $begingroup$
    $O(2n) = O(n).$
    $endgroup$
    – Solomon Ucko
    Mar 29 at 0:23










1




1




$begingroup$
Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
$endgroup$
– Graipher
Mar 23 at 11:17




$begingroup$
Your first bullet point is only true if each number in the array is unique. Otherwise you override instead of append.
$endgroup$
– Graipher
Mar 23 at 11:17




2




2




$begingroup$
@Graipher True, a defaultdict might be more appropriate there.
$endgroup$
– Ludisposed
Mar 23 at 16:28




$begingroup$
@Graipher True, a defaultdict might be more appropriate there.
$endgroup$
– Ludisposed
Mar 23 at 16:28












$begingroup$
$O(2n) = O(n).$
$endgroup$
– Solomon Ucko
Mar 29 at 0:23






$begingroup$
$O(2n) = O(n).$
$endgroup$
– Solomon Ucko
Mar 29 at 0:23















0












$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$









  • 2




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    Mar 22 at 22:29












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    Mar 23 at 18:54










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    Mar 23 at 22:19
















0












$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$









  • 2




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    Mar 22 at 22:29












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    Mar 23 at 18:54










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    Mar 23 at 22:19














0












0








0





$begingroup$


You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!






share|improve this answer











$endgroup$




You may assume that each input would have exactly one solution.




So there's no need to iterate over num twice. In fact, you won't even iterate over it for the full range, because you can return when you found the solution.



With the input given, I'd try this:



nums = [2, 7, 11, 15]
target = 9

def twoSum(nums, target):
for i in nums:
for m in nums[nums.index(i)+1:]:
if i + m == target:
return [nums.index(i), nums.index(m)]

print(twoSum(nums, target))


Say i + m is your target twoSum, you iterate over nums for each i and then look in the rest of num if there's any m for which i + m = target, and return when found.



Edit: This fails if you have duplicate integers in nums that add up to target, and it'll be slower if the solution is two elements near the end of nums.



Also: thank you for mentioning Leetcode, it's new to me. Nice!







share|improve this answer














share|improve this answer



share|improve this answer








edited Mar 22 at 10:43

























answered Mar 22 at 8:02









RolfBlyRolfBly

592418




592418








  • 2




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    Mar 22 at 22:29












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    Mar 23 at 18:54










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    Mar 23 at 22:19














  • 2




    $begingroup$
    Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
    $endgroup$
    – Peilonrayz
    Mar 22 at 22:29












  • $begingroup$
    Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
    $endgroup$
    – RolfBly
    Mar 23 at 18:54










  • $begingroup$
    Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
    $endgroup$
    – Peilonrayz
    Mar 23 at 22:19








2




2




$begingroup$
Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
$endgroup$
– Peilonrayz
Mar 22 at 22:29






$begingroup$
Hey, long time no see! Unfortunately the code you've supplied is worse than the one in the question, as it takes $O(n^2)$ time and either $O(n)$ or $O(n^2)$ memory, depending on the GC. Where in the question it runs in $O(n)$ time and space. Yours is however easier to understand.
$endgroup$
– Peilonrayz
Mar 22 at 22:29














$begingroup$
Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
$endgroup$
– RolfBly
Mar 23 at 18:54




$begingroup$
Hi, yes, I know, Ludisposed pointed that out as well, hence the edit. I came across the question in Triage, and thought I might as well try an answer. Hadn't thought beyond nums given, with which it yields the answer in 1+3+1=5 iterations. I'm not familiar with O(n^2), but I guess that'd be 16 here?
$endgroup$
– RolfBly
Mar 23 at 18:54












$begingroup$
Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
$endgroup$
– Peilonrayz
Mar 23 at 22:19




$begingroup$
Ah, he must have deleted his comments. :( Yes it goes by the worst case, so if 11 and 15 were the targets. It's different from mathematics however, as your function runs in IIRC worst case $frac{n^2}{2}$ iterations. And so it's mostly just a vague guess at performance.
$endgroup$
– Peilonrayz
Mar 23 at 22:19


















draft saved

draft discarded




















































Thanks for contributing an answer to Code Review Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f215975%2fhash-table-solution-to-twosum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Nidaros erkebispedøme

Birsay

Where did Arya get these scars? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why did Arya refuse to end it?Has the pronunciation of Arya Stark's name changed?Has Arya forgiven people?Why did Arya Stark lose her vision?Why can Arya still use the faces?Has the Narrow Sea become narrower?Does Arya Stark know how to make poisons outside of the House of Black and White?Why did Nymeria leave Arya?Why did Arya not kill the Lannister soldiers she encountered in the Riverlands?What is the current canonical age of Sansa, Bran and Arya Stark?