Addition chain with two sub-optimal sub-addition chains The 2019 Stack Overflow Developer...

Working through the single responsibility principle (SRP) in Python when calls are expensive

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Do I have Disadvantage attacking with an off-hand weapon?

Is 'stolen' appropriate word?

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

Can each chord in a progression create its own key?

Make it rain characters

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Was credit for the black hole image misappropriated?

Homework question about an engine pulling a train

"is" operation returns false even though two objects have same id

Simulating Exploding Dice

Single author papers against my advisor's will?

Button changing its text & action. Good or terrible?

Why not take a picture of a closer black hole?

Can the DM override racial traits?

Visa regaring travelling European country

What happens to a Warlock's expended Spell Slots when they gain a Level?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Presidential Pardon

First use of “packing” as in carrying a gun

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

Are spiders unable to hurt humans, especially very small spiders?

Are there continuous functions who are the same in an interval but differ in at least one other point?



Addition chain with two sub-optimal sub-addition chains



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraIs finding the length of the shortest addition chain for a number $n$ really $NP$-hard?Properties of shortest addition chains for small numbers (e.g. up to 600)Finding the minimum length of an addition chainNumber of Unimodular SequncesThe number of sequences with k elements, containing a given elementProblem on Möbius function on a finite posetAddition chain search tree pruning by discarding non-minimal chainsCounting the number of maximal chains in a posetPuzzle: How many ways can a chain of length $n$ be “cracked” to form new smaller chains?Prove $operatorname{height}(P) cdot operatorname{width}(P) geq |A|$ in partially ordered set?












0












$begingroup$


An addition chain is a finite sequence of positive integers that starts at $1$, so that any element of the sequence is a sum of two previous elements. That is, it is a sequence $(a_1, ldots, a_k)$ where $a_1 = 1$, and for each $i > 1$ there are $j, k < i$ such that $a_i = a_j + a_k$. An example of an addition chain is
$$
(1, 2, 3, 6, 12, 15).
$$

We call an addition chain that ends in $k$ an addition chain for $k$. We write $l(k)$ for the length of the shorted addition chain for $k$, not counting the 1 at the start of the sequence. Our example above shows that $l(15) leq 5$; in fact $l(15) = 5$.



You can read much more about addition chains on Achim Flammenkamp's page or on Wikipedia.



Write $C(k)$ for the set of addition chains for $k$, and $s(c)$ for the length of a chain $c$ (again not counting the initial 1). Furthermore, we use the notation $c_1 cup c_2$ informally to mean joining the chains $c_1, c_2$ while pruning repeat elements. Then we trivially have
$$
l(k) = min_{i < k \c_1 in C(i)\ c_2 in C(k - i)} s(c_1 cup c_2) + 1.
$$

Now in many cases, we will find that this minimum is not achieved if we restrict to $c_1, c_2$ such that $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$; to achieve maximal overlap, we may want a sequence for one of the summands which is suboptimal. My question is:




Is it possible that we need both subsequences to be suboptimal? That is, is the same minimum attained if we restrict to pairs $(c_1, c_2)$ such that at least one of $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$ holds?











share|cite|improve this question











$endgroup$












  • $begingroup$
    or mathworld ...
    $endgroup$
    – Roddy MacPhee
    Mar 25 at 13:11
















0












$begingroup$


An addition chain is a finite sequence of positive integers that starts at $1$, so that any element of the sequence is a sum of two previous elements. That is, it is a sequence $(a_1, ldots, a_k)$ where $a_1 = 1$, and for each $i > 1$ there are $j, k < i$ such that $a_i = a_j + a_k$. An example of an addition chain is
$$
(1, 2, 3, 6, 12, 15).
$$

We call an addition chain that ends in $k$ an addition chain for $k$. We write $l(k)$ for the length of the shorted addition chain for $k$, not counting the 1 at the start of the sequence. Our example above shows that $l(15) leq 5$; in fact $l(15) = 5$.



You can read much more about addition chains on Achim Flammenkamp's page or on Wikipedia.



Write $C(k)$ for the set of addition chains for $k$, and $s(c)$ for the length of a chain $c$ (again not counting the initial 1). Furthermore, we use the notation $c_1 cup c_2$ informally to mean joining the chains $c_1, c_2$ while pruning repeat elements. Then we trivially have
$$
l(k) = min_{i < k \c_1 in C(i)\ c_2 in C(k - i)} s(c_1 cup c_2) + 1.
$$

Now in many cases, we will find that this minimum is not achieved if we restrict to $c_1, c_2$ such that $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$; to achieve maximal overlap, we may want a sequence for one of the summands which is suboptimal. My question is:




Is it possible that we need both subsequences to be suboptimal? That is, is the same minimum attained if we restrict to pairs $(c_1, c_2)$ such that at least one of $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$ holds?











share|cite|improve this question











$endgroup$












  • $begingroup$
    or mathworld ...
    $endgroup$
    – Roddy MacPhee
    Mar 25 at 13:11














0












0








0





$begingroup$


An addition chain is a finite sequence of positive integers that starts at $1$, so that any element of the sequence is a sum of two previous elements. That is, it is a sequence $(a_1, ldots, a_k)$ where $a_1 = 1$, and for each $i > 1$ there are $j, k < i$ such that $a_i = a_j + a_k$. An example of an addition chain is
$$
(1, 2, 3, 6, 12, 15).
$$

We call an addition chain that ends in $k$ an addition chain for $k$. We write $l(k)$ for the length of the shorted addition chain for $k$, not counting the 1 at the start of the sequence. Our example above shows that $l(15) leq 5$; in fact $l(15) = 5$.



You can read much more about addition chains on Achim Flammenkamp's page or on Wikipedia.



Write $C(k)$ for the set of addition chains for $k$, and $s(c)$ for the length of a chain $c$ (again not counting the initial 1). Furthermore, we use the notation $c_1 cup c_2$ informally to mean joining the chains $c_1, c_2$ while pruning repeat elements. Then we trivially have
$$
l(k) = min_{i < k \c_1 in C(i)\ c_2 in C(k - i)} s(c_1 cup c_2) + 1.
$$

Now in many cases, we will find that this minimum is not achieved if we restrict to $c_1, c_2$ such that $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$; to achieve maximal overlap, we may want a sequence for one of the summands which is suboptimal. My question is:




Is it possible that we need both subsequences to be suboptimal? That is, is the same minimum attained if we restrict to pairs $(c_1, c_2)$ such that at least one of $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$ holds?











share|cite|improve this question











$endgroup$




An addition chain is a finite sequence of positive integers that starts at $1$, so that any element of the sequence is a sum of two previous elements. That is, it is a sequence $(a_1, ldots, a_k)$ where $a_1 = 1$, and for each $i > 1$ there are $j, k < i$ such that $a_i = a_j + a_k$. An example of an addition chain is
$$
(1, 2, 3, 6, 12, 15).
$$

We call an addition chain that ends in $k$ an addition chain for $k$. We write $l(k)$ for the length of the shorted addition chain for $k$, not counting the 1 at the start of the sequence. Our example above shows that $l(15) leq 5$; in fact $l(15) = 5$.



You can read much more about addition chains on Achim Flammenkamp's page or on Wikipedia.



Write $C(k)$ for the set of addition chains for $k$, and $s(c)$ for the length of a chain $c$ (again not counting the initial 1). Furthermore, we use the notation $c_1 cup c_2$ informally to mean joining the chains $c_1, c_2$ while pruning repeat elements. Then we trivially have
$$
l(k) = min_{i < k \c_1 in C(i)\ c_2 in C(k - i)} s(c_1 cup c_2) + 1.
$$

Now in many cases, we will find that this minimum is not achieved if we restrict to $c_1, c_2$ such that $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$; to achieve maximal overlap, we may want a sequence for one of the summands which is suboptimal. My question is:




Is it possible that we need both subsequences to be suboptimal? That is, is the same minimum attained if we restrict to pairs $(c_1, c_2)$ such that at least one of $s(c_1) = l(i)$ and $s(c_2) = l(k - i)$ holds?








combinatorics recreational-mathematics discrete-optimization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 22 at 13:26







Mees de Vries

















asked Mar 22 at 13:21









Mees de VriesMees de Vries

17.6k13060




17.6k13060












  • $begingroup$
    or mathworld ...
    $endgroup$
    – Roddy MacPhee
    Mar 25 at 13:11


















  • $begingroup$
    or mathworld ...
    $endgroup$
    – Roddy MacPhee
    Mar 25 at 13:11
















$begingroup$
or mathworld ...
$endgroup$
– Roddy MacPhee
Mar 25 at 13:11




$begingroup$
or mathworld ...
$endgroup$
– Roddy MacPhee
Mar 25 at 13:11










0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158136%2faddition-chain-with-two-sub-optimal-sub-addition-chains%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158136%2faddition-chain-with-two-sub-optimal-sub-addition-chains%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Nidaros erkebispedøme

Birsay

Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...