Given that $left(frac{a^2}{2}a_n-ab_nright)_n$ converges for all $ain(0,1]$, show that $(a_n)_n,(b_n)_n$ are...
Can someone explain what is being said here in color publishing in the American Mathematical Monthly?
Algorithm to convert a fixed-length string to the smallest possible collision-free representation?
What do you call the air that rushes into your car in the highway?
Is "history" a male-biased word ("his+story")?
Space in array system equations
If the Captain's screens are out, does he switch seats with the co-pilot?
Force user to remove USB token
Rejected in 4th interview round citing insufficient years of experience
Is having access to past exams cheating and, if yes, could it be proven just by a good grade?
"One can do his homework in the library"
Virginia employer terminated employee and wants signing bonus returned
Examples of a statistic that is not independent of sample's distribution?
A question on the ultrafilter number
How could our ancestors have domesticated a solitary predator?
What to do when during a meeting client people start to fight (even physically) with each others?
Subset counting for even numbers
Do I really need to have a scientific explanation for my premise?
How does airport security verify that you can carry a battery bank over 100 Wh?
A three room house but a three headED dog
What is the chance of making a successful appeal to dismissal decision from a PhD program after failing the qualifying exam in the 2nd attempt?
Offered promotion but I'm leaving. Should I tell?
Are babies of evil humanoid species inherently evil?
The bar has been raised
How strictly should I take "Candidates must be local"?
Given that $left(frac{a^2}{2}a_n-ab_nright)_n$ converges for all $ain(0,1]$, show that $(a_n)_n,(b_n)_n$ are convergent
$sum_{i=1}^{infty}a_n*b_n $ converges for all $lim_{n rightarrow infty}b_n = 1$, show that $a$ converges absolutelyShow that $lim_{n to infty} a_n = infty$ if and only if $lim_{n to infty} frac{1}{a_n} = 0$Prove that if $a_n>0$ and $sum a_n$ converges then $sum (frac {b_n}{a_n})$ convergesIf ${a_nb_n}$ is absolutely convergent for every ${b_n}$ that converges to 0, then ${a_n}$ is absolutely convergent.Sequence defined by max$left{a_n, b_n right}$. Proving convergenceProb. 8, Chap. 3 in Baby Rudin: If $sum a_n$ converges and $left{b_nright}$ is monotonic and bounded, then $sum a_n b_n$ converges.If ${a_n}$ and ${a_nb_n}$ are convergent sequences, then ${b_n}$ converges.$a_n$ is convergent, $b_n$ bounded, prove $sum a_n b_n$ convergesGiven $a_1 =1, a_{n+1}=a_n+e^{-a_n}$. Prove that $b_n:=a_n-ln(n)$ converges$limlimits_{nto infty} int_0^1 |f(x)-a_nx-b_n| dx=0$ implies $(a_n)_n,(b_n)_n$ are convergent
$begingroup$
We have 2 sequences $(a_n)_n,(b_n)_n$. It is known that the sequence $left(frac{1}{2}a_n-b_nright)_n$ is convergent and $left(frac{a^2}{2}a_n-ab_nright)_n$ converges for all $ain (0,1]$. Can somebody help me how to prove that $(a_n)_n,(b_n)_n$ are convergent? Please
sequences-and-series algebra-precalculus limits convergence
$endgroup$
add a comment |
$begingroup$
We have 2 sequences $(a_n)_n,(b_n)_n$. It is known that the sequence $left(frac{1}{2}a_n-b_nright)_n$ is convergent and $left(frac{a^2}{2}a_n-ab_nright)_n$ converges for all $ain (0,1]$. Can somebody help me how to prove that $(a_n)_n,(b_n)_n$ are convergent? Please
sequences-and-series algebra-precalculus limits convergence
$endgroup$
add a comment |
$begingroup$
We have 2 sequences $(a_n)_n,(b_n)_n$. It is known that the sequence $left(frac{1}{2}a_n-b_nright)_n$ is convergent and $left(frac{a^2}{2}a_n-ab_nright)_n$ converges for all $ain (0,1]$. Can somebody help me how to prove that $(a_n)_n,(b_n)_n$ are convergent? Please
sequences-and-series algebra-precalculus limits convergence
$endgroup$
We have 2 sequences $(a_n)_n,(b_n)_n$. It is known that the sequence $left(frac{1}{2}a_n-b_nright)_n$ is convergent and $left(frac{a^2}{2}a_n-ab_nright)_n$ converges for all $ain (0,1]$. Can somebody help me how to prove that $(a_n)_n,(b_n)_n$ are convergent? Please
sequences-and-series algebra-precalculus limits convergence
sequences-and-series algebra-precalculus limits convergence
edited Mar 9 at 20:52
rtybase
11.4k31533
11.4k31533
asked Mar 9 at 17:19
GaboruGaboru
4237
4237
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Since $frac{a^2}{2}a_n-ab_n$ converges for $a in (0,1]$, also $frac{1}{a}cdot (frac{a^2}{2}a_n-ab_n) = frac{a}{2}a_n-b_n$ converges. Hence $(frac{a}{2}a_n-b_n) - (frac{1}{2}a_n-b_n) = frac{a-1}{2}a_n$ converges. We conclude that $frac{2}{a-1} cdot frac{a-1}{2}a_n = a_n$ converges (note $a-1 ne 0$ for $a < 1$). Hence also $frac{1}{2}cdot a_n - (frac{1}{2}a_n-b_n) = b_n$ converges.
$endgroup$
add a comment |
$begingroup$
Let $f_n(a):=tfrac{a^2}{2}a_n-ab_n$. Given that $(f_n(a))_n$ converges for all $ain(0,1]$, so do
$$(4f_n(1)-8f_n(tfrac12))_n=(a_n)_n
qquadtext{ and }qquad
(f_n(1)-4f_n(tfrac12))_n=(b_n)_n.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3141360%2fgiven-that-left-fraca22a-n-ab-n-right-n-converges-for-all-a-in0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $frac{a^2}{2}a_n-ab_n$ converges for $a in (0,1]$, also $frac{1}{a}cdot (frac{a^2}{2}a_n-ab_n) = frac{a}{2}a_n-b_n$ converges. Hence $(frac{a}{2}a_n-b_n) - (frac{1}{2}a_n-b_n) = frac{a-1}{2}a_n$ converges. We conclude that $frac{2}{a-1} cdot frac{a-1}{2}a_n = a_n$ converges (note $a-1 ne 0$ for $a < 1$). Hence also $frac{1}{2}cdot a_n - (frac{1}{2}a_n-b_n) = b_n$ converges.
$endgroup$
add a comment |
$begingroup$
Since $frac{a^2}{2}a_n-ab_n$ converges for $a in (0,1]$, also $frac{1}{a}cdot (frac{a^2}{2}a_n-ab_n) = frac{a}{2}a_n-b_n$ converges. Hence $(frac{a}{2}a_n-b_n) - (frac{1}{2}a_n-b_n) = frac{a-1}{2}a_n$ converges. We conclude that $frac{2}{a-1} cdot frac{a-1}{2}a_n = a_n$ converges (note $a-1 ne 0$ for $a < 1$). Hence also $frac{1}{2}cdot a_n - (frac{1}{2}a_n-b_n) = b_n$ converges.
$endgroup$
add a comment |
$begingroup$
Since $frac{a^2}{2}a_n-ab_n$ converges for $a in (0,1]$, also $frac{1}{a}cdot (frac{a^2}{2}a_n-ab_n) = frac{a}{2}a_n-b_n$ converges. Hence $(frac{a}{2}a_n-b_n) - (frac{1}{2}a_n-b_n) = frac{a-1}{2}a_n$ converges. We conclude that $frac{2}{a-1} cdot frac{a-1}{2}a_n = a_n$ converges (note $a-1 ne 0$ for $a < 1$). Hence also $frac{1}{2}cdot a_n - (frac{1}{2}a_n-b_n) = b_n$ converges.
$endgroup$
Since $frac{a^2}{2}a_n-ab_n$ converges for $a in (0,1]$, also $frac{1}{a}cdot (frac{a^2}{2}a_n-ab_n) = frac{a}{2}a_n-b_n$ converges. Hence $(frac{a}{2}a_n-b_n) - (frac{1}{2}a_n-b_n) = frac{a-1}{2}a_n$ converges. We conclude that $frac{2}{a-1} cdot frac{a-1}{2}a_n = a_n$ converges (note $a-1 ne 0$ for $a < 1$). Hence also $frac{1}{2}cdot a_n - (frac{1}{2}a_n-b_n) = b_n$ converges.
edited Mar 9 at 19:34
answered Mar 9 at 17:37
Paul FrostPaul Frost
11.6k3934
11.6k3934
add a comment |
add a comment |
$begingroup$
Let $f_n(a):=tfrac{a^2}{2}a_n-ab_n$. Given that $(f_n(a))_n$ converges for all $ain(0,1]$, so do
$$(4f_n(1)-8f_n(tfrac12))_n=(a_n)_n
qquadtext{ and }qquad
(f_n(1)-4f_n(tfrac12))_n=(b_n)_n.$$
$endgroup$
add a comment |
$begingroup$
Let $f_n(a):=tfrac{a^2}{2}a_n-ab_n$. Given that $(f_n(a))_n$ converges for all $ain(0,1]$, so do
$$(4f_n(1)-8f_n(tfrac12))_n=(a_n)_n
qquadtext{ and }qquad
(f_n(1)-4f_n(tfrac12))_n=(b_n)_n.$$
$endgroup$
add a comment |
$begingroup$
Let $f_n(a):=tfrac{a^2}{2}a_n-ab_n$. Given that $(f_n(a))_n$ converges for all $ain(0,1]$, so do
$$(4f_n(1)-8f_n(tfrac12))_n=(a_n)_n
qquadtext{ and }qquad
(f_n(1)-4f_n(tfrac12))_n=(b_n)_n.$$
$endgroup$
Let $f_n(a):=tfrac{a^2}{2}a_n-ab_n$. Given that $(f_n(a))_n$ converges for all $ain(0,1]$, so do
$$(4f_n(1)-8f_n(tfrac12))_n=(a_n)_n
qquadtext{ and }qquad
(f_n(1)-4f_n(tfrac12))_n=(b_n)_n.$$
answered Mar 9 at 19:53
ServaesServaes
28.2k34099
28.2k34099
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3141360%2fgiven-that-left-fraca22a-n-ab-n-right-n-converges-for-all-a-in0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown