Large degree polynomial function [on hold]Solve a polynomial of degree dHow come the Bernstein operator...

How do I express some one as a black person?

Good for you! in Russian

Should I tell my boss the work he did was worthless

infinitive telling the purpose

Do I really need to have a scientific explanation for my premise?

Am I not good enough for you?

How are such low op-amp input currents possible?

Offered promotion but I'm leaving. Should I tell?

What is the likely impact of grounding an entire aircraft series?

How do I deal with a powergamer in a game full of beginners in a school club?

A question on the ultrafilter number

In the late 1940’s to early 1950’s what technology was available that could melt a LOT of ice?

How much stiffer are 23c tires over 28c?

Why doesn't this Google Translate ad use the word "Translation" instead of "Translate"?

Why does Deadpool say "You're welcome, Canada," after shooting Ryan Reynolds in the end credits?

Accountant/ lawyer will not return my call

Do items de-spawn in Diablo?

What do you call the air that rushes into your car in the highway?

How to create a hard link to an inode (ext4)?

MTG: Can I kill an opponent in response to lethal activated abilities, and not take the damage?

Are the terms "stab" and "staccato" synonyms?

Is it true that real estate prices mainly go up?

How could our ancestors have domesticated a solitary predator?

Algorithm to convert a fixed-length string to the smallest possible collision-free representation?



Large degree polynomial function [on hold]


Solve a polynomial of degree dHow come the Bernstein operator creates a polynomial of the same degree as its input function?Third degree polynomial with integer coefficient and three irrational rootsfactorization of even degree polynomialPolynomial of $11^{th}$ degreeTrigonometric Roots of a PolynomialZeros of a Fourth Degree PolynomialHow to determine if a polynomial is bounded from below?A question about a self-reciprocal polynomial of even degreeHow to solve equation with exponents multiplied with a polynomial?













0












$begingroup$


How does one solve for $x$ in a polynomial of the form
$ax^{n} + bx^{left(n - 1right)} + c = 0$, given that $n$ is a larger number ?. For example:



$displaystyle x^{100} - 3x^{99} + 1 = 0$










share|cite|improve this question











$endgroup$



put on hold as off-topic by Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh Mar 10 at 2:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.












  • 1




    $begingroup$
    Welcome to MSE. Please give more context to this question, so people can give you appropriate answers. Is there a specific polynomial you are interested in? Are you looking for exact solutions or numerical ones? Are you only interested in real solutions, or do you want the complex ones, too? What have you tried?
    $endgroup$
    – saulspatz
    Mar 9 at 17:57












  • $begingroup$
    For example: x^100-3x^99+1=0. I need both real and complex solutions.
    $endgroup$
    – UNIBON
    Mar 9 at 18:03










  • $begingroup$
    Please add the context to the body of your question. Many people browsing questions will vote to close a question with no more context than this, without looking at the comments. Also, you ought to use MathJax to make your posts more readable. Look at how I edited the question.
    $endgroup$
    – saulspatz
    Mar 9 at 18:11










  • $begingroup$
    Thanks...I have tried downloading the mathjax but it wasn't successful.
    $endgroup$
    – UNIBON
    Mar 9 at 18:22






  • 1




    $begingroup$
    You don't need to download MathJax. You just put formatting commands in the text. For example $x^{100}-3x^{99}+1=0$ is displayed as $x^{100}-3x^{99}+1=0$
    $endgroup$
    – saulspatz
    Mar 9 at 18:24
















0












$begingroup$


How does one solve for $x$ in a polynomial of the form
$ax^{n} + bx^{left(n - 1right)} + c = 0$, given that $n$ is a larger number ?. For example:



$displaystyle x^{100} - 3x^{99} + 1 = 0$










share|cite|improve this question











$endgroup$



put on hold as off-topic by Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh Mar 10 at 2:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.












  • 1




    $begingroup$
    Welcome to MSE. Please give more context to this question, so people can give you appropriate answers. Is there a specific polynomial you are interested in? Are you looking for exact solutions or numerical ones? Are you only interested in real solutions, or do you want the complex ones, too? What have you tried?
    $endgroup$
    – saulspatz
    Mar 9 at 17:57












  • $begingroup$
    For example: x^100-3x^99+1=0. I need both real and complex solutions.
    $endgroup$
    – UNIBON
    Mar 9 at 18:03










  • $begingroup$
    Please add the context to the body of your question. Many people browsing questions will vote to close a question with no more context than this, without looking at the comments. Also, you ought to use MathJax to make your posts more readable. Look at how I edited the question.
    $endgroup$
    – saulspatz
    Mar 9 at 18:11










  • $begingroup$
    Thanks...I have tried downloading the mathjax but it wasn't successful.
    $endgroup$
    – UNIBON
    Mar 9 at 18:22






  • 1




    $begingroup$
    You don't need to download MathJax. You just put formatting commands in the text. For example $x^{100}-3x^{99}+1=0$ is displayed as $x^{100}-3x^{99}+1=0$
    $endgroup$
    – saulspatz
    Mar 9 at 18:24














0












0








0





$begingroup$


How does one solve for $x$ in a polynomial of the form
$ax^{n} + bx^{left(n - 1right)} + c = 0$, given that $n$ is a larger number ?. For example:



$displaystyle x^{100} - 3x^{99} + 1 = 0$










share|cite|improve this question











$endgroup$




How does one solve for $x$ in a polynomial of the form
$ax^{n} + bx^{left(n - 1right)} + c = 0$, given that $n$ is a larger number ?. For example:



$displaystyle x^{100} - 3x^{99} + 1 = 0$







polynomials






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 9 at 18:29









Felix Marin

68.4k7109144




68.4k7109144










asked Mar 9 at 17:51









UNIBONUNIBON

52




52




put on hold as off-topic by Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh Mar 10 at 2:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.







put on hold as off-topic by Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh Mar 10 at 2:30


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Servaes, Travis, Eevee Trainer, Alex Provost, Shailesh

If this question can be reworded to fit the rules in the help center, please edit the question.








  • 1




    $begingroup$
    Welcome to MSE. Please give more context to this question, so people can give you appropriate answers. Is there a specific polynomial you are interested in? Are you looking for exact solutions or numerical ones? Are you only interested in real solutions, or do you want the complex ones, too? What have you tried?
    $endgroup$
    – saulspatz
    Mar 9 at 17:57












  • $begingroup$
    For example: x^100-3x^99+1=0. I need both real and complex solutions.
    $endgroup$
    – UNIBON
    Mar 9 at 18:03










  • $begingroup$
    Please add the context to the body of your question. Many people browsing questions will vote to close a question with no more context than this, without looking at the comments. Also, you ought to use MathJax to make your posts more readable. Look at how I edited the question.
    $endgroup$
    – saulspatz
    Mar 9 at 18:11










  • $begingroup$
    Thanks...I have tried downloading the mathjax but it wasn't successful.
    $endgroup$
    – UNIBON
    Mar 9 at 18:22






  • 1




    $begingroup$
    You don't need to download MathJax. You just put formatting commands in the text. For example $x^{100}-3x^{99}+1=0$ is displayed as $x^{100}-3x^{99}+1=0$
    $endgroup$
    – saulspatz
    Mar 9 at 18:24














  • 1




    $begingroup$
    Welcome to MSE. Please give more context to this question, so people can give you appropriate answers. Is there a specific polynomial you are interested in? Are you looking for exact solutions or numerical ones? Are you only interested in real solutions, or do you want the complex ones, too? What have you tried?
    $endgroup$
    – saulspatz
    Mar 9 at 17:57












  • $begingroup$
    For example: x^100-3x^99+1=0. I need both real and complex solutions.
    $endgroup$
    – UNIBON
    Mar 9 at 18:03










  • $begingroup$
    Please add the context to the body of your question. Many people browsing questions will vote to close a question with no more context than this, without looking at the comments. Also, you ought to use MathJax to make your posts more readable. Look at how I edited the question.
    $endgroup$
    – saulspatz
    Mar 9 at 18:11










  • $begingroup$
    Thanks...I have tried downloading the mathjax but it wasn't successful.
    $endgroup$
    – UNIBON
    Mar 9 at 18:22






  • 1




    $begingroup$
    You don't need to download MathJax. You just put formatting commands in the text. For example $x^{100}-3x^{99}+1=0$ is displayed as $x^{100}-3x^{99}+1=0$
    $endgroup$
    – saulspatz
    Mar 9 at 18:24








1




1




$begingroup$
Welcome to MSE. Please give more context to this question, so people can give you appropriate answers. Is there a specific polynomial you are interested in? Are you looking for exact solutions or numerical ones? Are you only interested in real solutions, or do you want the complex ones, too? What have you tried?
$endgroup$
– saulspatz
Mar 9 at 17:57






$begingroup$
Welcome to MSE. Please give more context to this question, so people can give you appropriate answers. Is there a specific polynomial you are interested in? Are you looking for exact solutions or numerical ones? Are you only interested in real solutions, or do you want the complex ones, too? What have you tried?
$endgroup$
– saulspatz
Mar 9 at 17:57














$begingroup$
For example: x^100-3x^99+1=0. I need both real and complex solutions.
$endgroup$
– UNIBON
Mar 9 at 18:03




$begingroup$
For example: x^100-3x^99+1=0. I need both real and complex solutions.
$endgroup$
– UNIBON
Mar 9 at 18:03












$begingroup$
Please add the context to the body of your question. Many people browsing questions will vote to close a question with no more context than this, without looking at the comments. Also, you ought to use MathJax to make your posts more readable. Look at how I edited the question.
$endgroup$
– saulspatz
Mar 9 at 18:11




$begingroup$
Please add the context to the body of your question. Many people browsing questions will vote to close a question with no more context than this, without looking at the comments. Also, you ought to use MathJax to make your posts more readable. Look at how I edited the question.
$endgroup$
– saulspatz
Mar 9 at 18:11












$begingroup$
Thanks...I have tried downloading the mathjax but it wasn't successful.
$endgroup$
– UNIBON
Mar 9 at 18:22




$begingroup$
Thanks...I have tried downloading the mathjax but it wasn't successful.
$endgroup$
– UNIBON
Mar 9 at 18:22




1




1




$begingroup$
You don't need to download MathJax. You just put formatting commands in the text. For example $x^{100}-3x^{99}+1=0$ is displayed as $x^{100}-3x^{99}+1=0$
$endgroup$
– saulspatz
Mar 9 at 18:24




$begingroup$
You don't need to download MathJax. You just put formatting commands in the text. For example $x^{100}-3x^{99}+1=0$ is displayed as $x^{100}-3x^{99}+1=0$
$endgroup$
– saulspatz
Mar 9 at 18:24










1 Answer
1






active

oldest

votes


















-1












$begingroup$

I'm still not sure I understand the question, but this is easy with a computer, assuming you want numerical values. I wrote a python script to do this. (Annoyingly, numpy expects the leading coefficient $x^k$ of a polynomial of degre $n$ to be at index $n-k.$)



import numpy as np

p = np.zeros((101))
p[0]=1
p[1]=-3
p[100]=1
roots = np.roots(p)
for idx, root in enumerate(roots):
print(idx, root)


produces this output instantaneously:



0 (3.000000000000001+0j)
1 (-0.7364491456451218+0.6565561896636651j)
2 (-0.7364491456451218-0.6565561896636651j)
3 (-0.7764559201902995+0.6085861156452325j)
4 (-0.7764559201902995-0.6085861156452325j)
5 (-0.8133485650308432+0.5581912452828626j)
6 (-0.8133485650308432-0.5581912452828626j)
7 (-0.6934865839515425+0.701909773950447j)
8 (-0.6934865839515425-0.701909773950447j)
9 (-0.8469810844038753+0.5055727935082724j)
10 (-0.8469810844038753-0.5055727935082724j)
11 (-0.8772204006792861+0.4509407077743689j)
12 (-0.8772204006792861-0.4509407077743689j)
13 (-0.647738305184038+0.7444654479736014j)
14 (-0.647738305184038-0.7444654479736014j)
15 (-0.9039468754197537+0.39451284443370066j)
16 (-0.9039468754197537-0.39451284443370066j)
17 (-0.5993854422724829+0.7840527747018899j)
18 (-0.5993854422724829-0.7840527747018899j)
19 (-0.9270547780297581+0.3365141137728261j)
20 (-0.9270547780297581-0.3365141137728261j)
21 (-0.548619483695713+0.8205129677981756j)
22 (-0.548619483695713-0.8205129677981756j)
23 (-0.9464527000806124+0.2771755970853744j)
24 (-0.9464527000806124-0.2771755970853744j)
25 (-0.4956415264634955+0.8536995127614468j)
26 (-0.4956415264634955-0.8536995127614468j)
27 (-0.4406614924968664+0.8834787396172576j)
28 (-0.4406614924968664-0.8834787396172576j)
29 (-0.9620639136235793+0.21673363928004163j)
30 (-0.9620639136235793-0.21673363928004163j)
31 (-0.38389731168552527+0.909730344970996j)
32 (-0.38389731168552527-0.909730344970996j)
33 (-0.3255740750583158+0.9323478614682946j)
34 (-0.3255740750583158-0.9323478614682946j)
35 (0.7577303192949743+0.6394431221673114j)
36 (0.7577303192949743-0.6394431221673114j)
37 (0.7970347431023204+0.590099961131214j)
38 (0.7970347431023204-0.590099961131214j)
39 (0.7153872255455767+0.6861568685320916j)
40 (0.7153872255455767-0.6861568685320916j)
41 (0.8331341618753201+0.5383229631320452j)
42 (0.8331341618753201-0.5383229631320452j)
43 (0.6701830619131026+0.7300572029385581j)
44 (0.6701830619131026-0.7300572029385581j)
45 (0.8658742980131764+0.48431875063231544j)
46 (0.8658742980131764-0.48431875063231544j)
47 (0.6223059154766839+0.7709722084480215j)
48 (0.6223059154766839-0.7709722084480215j)
49 (0.5719535879849889+0.8087425205066434j)
50 (0.5719535879849889-0.8087425205066434j)
51 (0.8951137460294047+0.4283044061929457j)
52 (0.8951137460294047-0.4283044061929457j)
53 (0.5193328204049903+0.8432217744454027j)
54 (0.5193328204049903-0.8432217744454027j)
55 (0.9207248128533412+0.3705068199042141j)
56 (0.9207248128533412-0.3705068199042141j)
57 (0.46465850700695943+0.8742770284347632j)
58 (0.46465850700695943-0.8742770284347632j)
59 (0.9425943804458727+0.31116194515065604j)
60 (0.9425943804458727-0.31116194515065604j)
61 (-0.2659231616491491+0.9512390729535296j)
62 (-0.2659231616491491-0.9512390729535296j)
63 (0.4081528934442288+0.9017891596220862j)
64 (0.4081528934442288-0.9017891596220862j)
65 (0.9606247774115534+0.2505139365561644j)
66 (0.9606247774115534-0.2505139365561644j)
67 (0.9747346342048573+0.1888141457593689j)
68 (0.9747346342048573-0.1888141457593689j)
69 (0.35004475520869627+0.9256532298451866j)
70 (0.35004475520869627-0.9256532298451866j)
71 (-0.20518134277364738+0.966326373881672j)
72 (-0.20518134277364738-0.966326373881672j)
73 (0.2905685546336416+0.9457788166930109j)
74 (0.2905685546336416-0.9457788166930109j)
75 (0.9848596842823707+0.1263199581194814j)
76 (0.9848596842823707-0.1263199581194814j)
77 (-0.9738266720335937+0.15542892061869676j)
78 (-0.9738266720335937-0.15542892061869676j)
79 (0.2299635761582389+0.9620903055655939j)
80 (0.2299635761582389-0.9620903055655939j)
81 (-0.14358986755051278+0.977547071822796j)
82 (-0.14358986755051278-0.977547071822796j)
83 (0.1684730408262214+0.9745271385958778j)
84 (0.1684730408262214-0.9745271385958778j)
85 (0.9909534640600726+0.06329346693748208j)
86 (0.9909534640600726-0.06329346693748208j)
87 (0.9929878610066416+0j)
88 (-0.9816944521616785+0.09350551126383294j)
89 (-0.9816944521616785-0.09350551126383294j)
90 (0.10634320197349573+0.9830440167028471j)
91 (0.10634320197349573-0.9830440167028471j)
92 (-0.08139353360287407+0.9848536322040496j)
93 (-0.08139353360287407-0.9848536322040496j)
94 (0.043822424798379056+0.987611051554128j)
95 (0.043822424798379056-0.987611051554128j)
96 (-0.01883974695583218+0.9882138647642805j)
97 (-0.01883974695583218-0.9882138647642805j)
98 (-0.9856361368133812+0.031209912383584327j)
99 (-0.9856361368133812-0.031209912383584327j)


Is there some reason that this isn't good enough?






share|cite|improve this answer









$endgroup$




















    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    -1












    $begingroup$

    I'm still not sure I understand the question, but this is easy with a computer, assuming you want numerical values. I wrote a python script to do this. (Annoyingly, numpy expects the leading coefficient $x^k$ of a polynomial of degre $n$ to be at index $n-k.$)



    import numpy as np

    p = np.zeros((101))
    p[0]=1
    p[1]=-3
    p[100]=1
    roots = np.roots(p)
    for idx, root in enumerate(roots):
    print(idx, root)


    produces this output instantaneously:



    0 (3.000000000000001+0j)
    1 (-0.7364491456451218+0.6565561896636651j)
    2 (-0.7364491456451218-0.6565561896636651j)
    3 (-0.7764559201902995+0.6085861156452325j)
    4 (-0.7764559201902995-0.6085861156452325j)
    5 (-0.8133485650308432+0.5581912452828626j)
    6 (-0.8133485650308432-0.5581912452828626j)
    7 (-0.6934865839515425+0.701909773950447j)
    8 (-0.6934865839515425-0.701909773950447j)
    9 (-0.8469810844038753+0.5055727935082724j)
    10 (-0.8469810844038753-0.5055727935082724j)
    11 (-0.8772204006792861+0.4509407077743689j)
    12 (-0.8772204006792861-0.4509407077743689j)
    13 (-0.647738305184038+0.7444654479736014j)
    14 (-0.647738305184038-0.7444654479736014j)
    15 (-0.9039468754197537+0.39451284443370066j)
    16 (-0.9039468754197537-0.39451284443370066j)
    17 (-0.5993854422724829+0.7840527747018899j)
    18 (-0.5993854422724829-0.7840527747018899j)
    19 (-0.9270547780297581+0.3365141137728261j)
    20 (-0.9270547780297581-0.3365141137728261j)
    21 (-0.548619483695713+0.8205129677981756j)
    22 (-0.548619483695713-0.8205129677981756j)
    23 (-0.9464527000806124+0.2771755970853744j)
    24 (-0.9464527000806124-0.2771755970853744j)
    25 (-0.4956415264634955+0.8536995127614468j)
    26 (-0.4956415264634955-0.8536995127614468j)
    27 (-0.4406614924968664+0.8834787396172576j)
    28 (-0.4406614924968664-0.8834787396172576j)
    29 (-0.9620639136235793+0.21673363928004163j)
    30 (-0.9620639136235793-0.21673363928004163j)
    31 (-0.38389731168552527+0.909730344970996j)
    32 (-0.38389731168552527-0.909730344970996j)
    33 (-0.3255740750583158+0.9323478614682946j)
    34 (-0.3255740750583158-0.9323478614682946j)
    35 (0.7577303192949743+0.6394431221673114j)
    36 (0.7577303192949743-0.6394431221673114j)
    37 (0.7970347431023204+0.590099961131214j)
    38 (0.7970347431023204-0.590099961131214j)
    39 (0.7153872255455767+0.6861568685320916j)
    40 (0.7153872255455767-0.6861568685320916j)
    41 (0.8331341618753201+0.5383229631320452j)
    42 (0.8331341618753201-0.5383229631320452j)
    43 (0.6701830619131026+0.7300572029385581j)
    44 (0.6701830619131026-0.7300572029385581j)
    45 (0.8658742980131764+0.48431875063231544j)
    46 (0.8658742980131764-0.48431875063231544j)
    47 (0.6223059154766839+0.7709722084480215j)
    48 (0.6223059154766839-0.7709722084480215j)
    49 (0.5719535879849889+0.8087425205066434j)
    50 (0.5719535879849889-0.8087425205066434j)
    51 (0.8951137460294047+0.4283044061929457j)
    52 (0.8951137460294047-0.4283044061929457j)
    53 (0.5193328204049903+0.8432217744454027j)
    54 (0.5193328204049903-0.8432217744454027j)
    55 (0.9207248128533412+0.3705068199042141j)
    56 (0.9207248128533412-0.3705068199042141j)
    57 (0.46465850700695943+0.8742770284347632j)
    58 (0.46465850700695943-0.8742770284347632j)
    59 (0.9425943804458727+0.31116194515065604j)
    60 (0.9425943804458727-0.31116194515065604j)
    61 (-0.2659231616491491+0.9512390729535296j)
    62 (-0.2659231616491491-0.9512390729535296j)
    63 (0.4081528934442288+0.9017891596220862j)
    64 (0.4081528934442288-0.9017891596220862j)
    65 (0.9606247774115534+0.2505139365561644j)
    66 (0.9606247774115534-0.2505139365561644j)
    67 (0.9747346342048573+0.1888141457593689j)
    68 (0.9747346342048573-0.1888141457593689j)
    69 (0.35004475520869627+0.9256532298451866j)
    70 (0.35004475520869627-0.9256532298451866j)
    71 (-0.20518134277364738+0.966326373881672j)
    72 (-0.20518134277364738-0.966326373881672j)
    73 (0.2905685546336416+0.9457788166930109j)
    74 (0.2905685546336416-0.9457788166930109j)
    75 (0.9848596842823707+0.1263199581194814j)
    76 (0.9848596842823707-0.1263199581194814j)
    77 (-0.9738266720335937+0.15542892061869676j)
    78 (-0.9738266720335937-0.15542892061869676j)
    79 (0.2299635761582389+0.9620903055655939j)
    80 (0.2299635761582389-0.9620903055655939j)
    81 (-0.14358986755051278+0.977547071822796j)
    82 (-0.14358986755051278-0.977547071822796j)
    83 (0.1684730408262214+0.9745271385958778j)
    84 (0.1684730408262214-0.9745271385958778j)
    85 (0.9909534640600726+0.06329346693748208j)
    86 (0.9909534640600726-0.06329346693748208j)
    87 (0.9929878610066416+0j)
    88 (-0.9816944521616785+0.09350551126383294j)
    89 (-0.9816944521616785-0.09350551126383294j)
    90 (0.10634320197349573+0.9830440167028471j)
    91 (0.10634320197349573-0.9830440167028471j)
    92 (-0.08139353360287407+0.9848536322040496j)
    93 (-0.08139353360287407-0.9848536322040496j)
    94 (0.043822424798379056+0.987611051554128j)
    95 (0.043822424798379056-0.987611051554128j)
    96 (-0.01883974695583218+0.9882138647642805j)
    97 (-0.01883974695583218-0.9882138647642805j)
    98 (-0.9856361368133812+0.031209912383584327j)
    99 (-0.9856361368133812-0.031209912383584327j)


    Is there some reason that this isn't good enough?






    share|cite|improve this answer









    $endgroup$


















      -1












      $begingroup$

      I'm still not sure I understand the question, but this is easy with a computer, assuming you want numerical values. I wrote a python script to do this. (Annoyingly, numpy expects the leading coefficient $x^k$ of a polynomial of degre $n$ to be at index $n-k.$)



      import numpy as np

      p = np.zeros((101))
      p[0]=1
      p[1]=-3
      p[100]=1
      roots = np.roots(p)
      for idx, root in enumerate(roots):
      print(idx, root)


      produces this output instantaneously:



      0 (3.000000000000001+0j)
      1 (-0.7364491456451218+0.6565561896636651j)
      2 (-0.7364491456451218-0.6565561896636651j)
      3 (-0.7764559201902995+0.6085861156452325j)
      4 (-0.7764559201902995-0.6085861156452325j)
      5 (-0.8133485650308432+0.5581912452828626j)
      6 (-0.8133485650308432-0.5581912452828626j)
      7 (-0.6934865839515425+0.701909773950447j)
      8 (-0.6934865839515425-0.701909773950447j)
      9 (-0.8469810844038753+0.5055727935082724j)
      10 (-0.8469810844038753-0.5055727935082724j)
      11 (-0.8772204006792861+0.4509407077743689j)
      12 (-0.8772204006792861-0.4509407077743689j)
      13 (-0.647738305184038+0.7444654479736014j)
      14 (-0.647738305184038-0.7444654479736014j)
      15 (-0.9039468754197537+0.39451284443370066j)
      16 (-0.9039468754197537-0.39451284443370066j)
      17 (-0.5993854422724829+0.7840527747018899j)
      18 (-0.5993854422724829-0.7840527747018899j)
      19 (-0.9270547780297581+0.3365141137728261j)
      20 (-0.9270547780297581-0.3365141137728261j)
      21 (-0.548619483695713+0.8205129677981756j)
      22 (-0.548619483695713-0.8205129677981756j)
      23 (-0.9464527000806124+0.2771755970853744j)
      24 (-0.9464527000806124-0.2771755970853744j)
      25 (-0.4956415264634955+0.8536995127614468j)
      26 (-0.4956415264634955-0.8536995127614468j)
      27 (-0.4406614924968664+0.8834787396172576j)
      28 (-0.4406614924968664-0.8834787396172576j)
      29 (-0.9620639136235793+0.21673363928004163j)
      30 (-0.9620639136235793-0.21673363928004163j)
      31 (-0.38389731168552527+0.909730344970996j)
      32 (-0.38389731168552527-0.909730344970996j)
      33 (-0.3255740750583158+0.9323478614682946j)
      34 (-0.3255740750583158-0.9323478614682946j)
      35 (0.7577303192949743+0.6394431221673114j)
      36 (0.7577303192949743-0.6394431221673114j)
      37 (0.7970347431023204+0.590099961131214j)
      38 (0.7970347431023204-0.590099961131214j)
      39 (0.7153872255455767+0.6861568685320916j)
      40 (0.7153872255455767-0.6861568685320916j)
      41 (0.8331341618753201+0.5383229631320452j)
      42 (0.8331341618753201-0.5383229631320452j)
      43 (0.6701830619131026+0.7300572029385581j)
      44 (0.6701830619131026-0.7300572029385581j)
      45 (0.8658742980131764+0.48431875063231544j)
      46 (0.8658742980131764-0.48431875063231544j)
      47 (0.6223059154766839+0.7709722084480215j)
      48 (0.6223059154766839-0.7709722084480215j)
      49 (0.5719535879849889+0.8087425205066434j)
      50 (0.5719535879849889-0.8087425205066434j)
      51 (0.8951137460294047+0.4283044061929457j)
      52 (0.8951137460294047-0.4283044061929457j)
      53 (0.5193328204049903+0.8432217744454027j)
      54 (0.5193328204049903-0.8432217744454027j)
      55 (0.9207248128533412+0.3705068199042141j)
      56 (0.9207248128533412-0.3705068199042141j)
      57 (0.46465850700695943+0.8742770284347632j)
      58 (0.46465850700695943-0.8742770284347632j)
      59 (0.9425943804458727+0.31116194515065604j)
      60 (0.9425943804458727-0.31116194515065604j)
      61 (-0.2659231616491491+0.9512390729535296j)
      62 (-0.2659231616491491-0.9512390729535296j)
      63 (0.4081528934442288+0.9017891596220862j)
      64 (0.4081528934442288-0.9017891596220862j)
      65 (0.9606247774115534+0.2505139365561644j)
      66 (0.9606247774115534-0.2505139365561644j)
      67 (0.9747346342048573+0.1888141457593689j)
      68 (0.9747346342048573-0.1888141457593689j)
      69 (0.35004475520869627+0.9256532298451866j)
      70 (0.35004475520869627-0.9256532298451866j)
      71 (-0.20518134277364738+0.966326373881672j)
      72 (-0.20518134277364738-0.966326373881672j)
      73 (0.2905685546336416+0.9457788166930109j)
      74 (0.2905685546336416-0.9457788166930109j)
      75 (0.9848596842823707+0.1263199581194814j)
      76 (0.9848596842823707-0.1263199581194814j)
      77 (-0.9738266720335937+0.15542892061869676j)
      78 (-0.9738266720335937-0.15542892061869676j)
      79 (0.2299635761582389+0.9620903055655939j)
      80 (0.2299635761582389-0.9620903055655939j)
      81 (-0.14358986755051278+0.977547071822796j)
      82 (-0.14358986755051278-0.977547071822796j)
      83 (0.1684730408262214+0.9745271385958778j)
      84 (0.1684730408262214-0.9745271385958778j)
      85 (0.9909534640600726+0.06329346693748208j)
      86 (0.9909534640600726-0.06329346693748208j)
      87 (0.9929878610066416+0j)
      88 (-0.9816944521616785+0.09350551126383294j)
      89 (-0.9816944521616785-0.09350551126383294j)
      90 (0.10634320197349573+0.9830440167028471j)
      91 (0.10634320197349573-0.9830440167028471j)
      92 (-0.08139353360287407+0.9848536322040496j)
      93 (-0.08139353360287407-0.9848536322040496j)
      94 (0.043822424798379056+0.987611051554128j)
      95 (0.043822424798379056-0.987611051554128j)
      96 (-0.01883974695583218+0.9882138647642805j)
      97 (-0.01883974695583218-0.9882138647642805j)
      98 (-0.9856361368133812+0.031209912383584327j)
      99 (-0.9856361368133812-0.031209912383584327j)


      Is there some reason that this isn't good enough?






      share|cite|improve this answer









      $endgroup$
















        -1












        -1








        -1





        $begingroup$

        I'm still not sure I understand the question, but this is easy with a computer, assuming you want numerical values. I wrote a python script to do this. (Annoyingly, numpy expects the leading coefficient $x^k$ of a polynomial of degre $n$ to be at index $n-k.$)



        import numpy as np

        p = np.zeros((101))
        p[0]=1
        p[1]=-3
        p[100]=1
        roots = np.roots(p)
        for idx, root in enumerate(roots):
        print(idx, root)


        produces this output instantaneously:



        0 (3.000000000000001+0j)
        1 (-0.7364491456451218+0.6565561896636651j)
        2 (-0.7364491456451218-0.6565561896636651j)
        3 (-0.7764559201902995+0.6085861156452325j)
        4 (-0.7764559201902995-0.6085861156452325j)
        5 (-0.8133485650308432+0.5581912452828626j)
        6 (-0.8133485650308432-0.5581912452828626j)
        7 (-0.6934865839515425+0.701909773950447j)
        8 (-0.6934865839515425-0.701909773950447j)
        9 (-0.8469810844038753+0.5055727935082724j)
        10 (-0.8469810844038753-0.5055727935082724j)
        11 (-0.8772204006792861+0.4509407077743689j)
        12 (-0.8772204006792861-0.4509407077743689j)
        13 (-0.647738305184038+0.7444654479736014j)
        14 (-0.647738305184038-0.7444654479736014j)
        15 (-0.9039468754197537+0.39451284443370066j)
        16 (-0.9039468754197537-0.39451284443370066j)
        17 (-0.5993854422724829+0.7840527747018899j)
        18 (-0.5993854422724829-0.7840527747018899j)
        19 (-0.9270547780297581+0.3365141137728261j)
        20 (-0.9270547780297581-0.3365141137728261j)
        21 (-0.548619483695713+0.8205129677981756j)
        22 (-0.548619483695713-0.8205129677981756j)
        23 (-0.9464527000806124+0.2771755970853744j)
        24 (-0.9464527000806124-0.2771755970853744j)
        25 (-0.4956415264634955+0.8536995127614468j)
        26 (-0.4956415264634955-0.8536995127614468j)
        27 (-0.4406614924968664+0.8834787396172576j)
        28 (-0.4406614924968664-0.8834787396172576j)
        29 (-0.9620639136235793+0.21673363928004163j)
        30 (-0.9620639136235793-0.21673363928004163j)
        31 (-0.38389731168552527+0.909730344970996j)
        32 (-0.38389731168552527-0.909730344970996j)
        33 (-0.3255740750583158+0.9323478614682946j)
        34 (-0.3255740750583158-0.9323478614682946j)
        35 (0.7577303192949743+0.6394431221673114j)
        36 (0.7577303192949743-0.6394431221673114j)
        37 (0.7970347431023204+0.590099961131214j)
        38 (0.7970347431023204-0.590099961131214j)
        39 (0.7153872255455767+0.6861568685320916j)
        40 (0.7153872255455767-0.6861568685320916j)
        41 (0.8331341618753201+0.5383229631320452j)
        42 (0.8331341618753201-0.5383229631320452j)
        43 (0.6701830619131026+0.7300572029385581j)
        44 (0.6701830619131026-0.7300572029385581j)
        45 (0.8658742980131764+0.48431875063231544j)
        46 (0.8658742980131764-0.48431875063231544j)
        47 (0.6223059154766839+0.7709722084480215j)
        48 (0.6223059154766839-0.7709722084480215j)
        49 (0.5719535879849889+0.8087425205066434j)
        50 (0.5719535879849889-0.8087425205066434j)
        51 (0.8951137460294047+0.4283044061929457j)
        52 (0.8951137460294047-0.4283044061929457j)
        53 (0.5193328204049903+0.8432217744454027j)
        54 (0.5193328204049903-0.8432217744454027j)
        55 (0.9207248128533412+0.3705068199042141j)
        56 (0.9207248128533412-0.3705068199042141j)
        57 (0.46465850700695943+0.8742770284347632j)
        58 (0.46465850700695943-0.8742770284347632j)
        59 (0.9425943804458727+0.31116194515065604j)
        60 (0.9425943804458727-0.31116194515065604j)
        61 (-0.2659231616491491+0.9512390729535296j)
        62 (-0.2659231616491491-0.9512390729535296j)
        63 (0.4081528934442288+0.9017891596220862j)
        64 (0.4081528934442288-0.9017891596220862j)
        65 (0.9606247774115534+0.2505139365561644j)
        66 (0.9606247774115534-0.2505139365561644j)
        67 (0.9747346342048573+0.1888141457593689j)
        68 (0.9747346342048573-0.1888141457593689j)
        69 (0.35004475520869627+0.9256532298451866j)
        70 (0.35004475520869627-0.9256532298451866j)
        71 (-0.20518134277364738+0.966326373881672j)
        72 (-0.20518134277364738-0.966326373881672j)
        73 (0.2905685546336416+0.9457788166930109j)
        74 (0.2905685546336416-0.9457788166930109j)
        75 (0.9848596842823707+0.1263199581194814j)
        76 (0.9848596842823707-0.1263199581194814j)
        77 (-0.9738266720335937+0.15542892061869676j)
        78 (-0.9738266720335937-0.15542892061869676j)
        79 (0.2299635761582389+0.9620903055655939j)
        80 (0.2299635761582389-0.9620903055655939j)
        81 (-0.14358986755051278+0.977547071822796j)
        82 (-0.14358986755051278-0.977547071822796j)
        83 (0.1684730408262214+0.9745271385958778j)
        84 (0.1684730408262214-0.9745271385958778j)
        85 (0.9909534640600726+0.06329346693748208j)
        86 (0.9909534640600726-0.06329346693748208j)
        87 (0.9929878610066416+0j)
        88 (-0.9816944521616785+0.09350551126383294j)
        89 (-0.9816944521616785-0.09350551126383294j)
        90 (0.10634320197349573+0.9830440167028471j)
        91 (0.10634320197349573-0.9830440167028471j)
        92 (-0.08139353360287407+0.9848536322040496j)
        93 (-0.08139353360287407-0.9848536322040496j)
        94 (0.043822424798379056+0.987611051554128j)
        95 (0.043822424798379056-0.987611051554128j)
        96 (-0.01883974695583218+0.9882138647642805j)
        97 (-0.01883974695583218-0.9882138647642805j)
        98 (-0.9856361368133812+0.031209912383584327j)
        99 (-0.9856361368133812-0.031209912383584327j)


        Is there some reason that this isn't good enough?






        share|cite|improve this answer









        $endgroup$



        I'm still not sure I understand the question, but this is easy with a computer, assuming you want numerical values. I wrote a python script to do this. (Annoyingly, numpy expects the leading coefficient $x^k$ of a polynomial of degre $n$ to be at index $n-k.$)



        import numpy as np

        p = np.zeros((101))
        p[0]=1
        p[1]=-3
        p[100]=1
        roots = np.roots(p)
        for idx, root in enumerate(roots):
        print(idx, root)


        produces this output instantaneously:



        0 (3.000000000000001+0j)
        1 (-0.7364491456451218+0.6565561896636651j)
        2 (-0.7364491456451218-0.6565561896636651j)
        3 (-0.7764559201902995+0.6085861156452325j)
        4 (-0.7764559201902995-0.6085861156452325j)
        5 (-0.8133485650308432+0.5581912452828626j)
        6 (-0.8133485650308432-0.5581912452828626j)
        7 (-0.6934865839515425+0.701909773950447j)
        8 (-0.6934865839515425-0.701909773950447j)
        9 (-0.8469810844038753+0.5055727935082724j)
        10 (-0.8469810844038753-0.5055727935082724j)
        11 (-0.8772204006792861+0.4509407077743689j)
        12 (-0.8772204006792861-0.4509407077743689j)
        13 (-0.647738305184038+0.7444654479736014j)
        14 (-0.647738305184038-0.7444654479736014j)
        15 (-0.9039468754197537+0.39451284443370066j)
        16 (-0.9039468754197537-0.39451284443370066j)
        17 (-0.5993854422724829+0.7840527747018899j)
        18 (-0.5993854422724829-0.7840527747018899j)
        19 (-0.9270547780297581+0.3365141137728261j)
        20 (-0.9270547780297581-0.3365141137728261j)
        21 (-0.548619483695713+0.8205129677981756j)
        22 (-0.548619483695713-0.8205129677981756j)
        23 (-0.9464527000806124+0.2771755970853744j)
        24 (-0.9464527000806124-0.2771755970853744j)
        25 (-0.4956415264634955+0.8536995127614468j)
        26 (-0.4956415264634955-0.8536995127614468j)
        27 (-0.4406614924968664+0.8834787396172576j)
        28 (-0.4406614924968664-0.8834787396172576j)
        29 (-0.9620639136235793+0.21673363928004163j)
        30 (-0.9620639136235793-0.21673363928004163j)
        31 (-0.38389731168552527+0.909730344970996j)
        32 (-0.38389731168552527-0.909730344970996j)
        33 (-0.3255740750583158+0.9323478614682946j)
        34 (-0.3255740750583158-0.9323478614682946j)
        35 (0.7577303192949743+0.6394431221673114j)
        36 (0.7577303192949743-0.6394431221673114j)
        37 (0.7970347431023204+0.590099961131214j)
        38 (0.7970347431023204-0.590099961131214j)
        39 (0.7153872255455767+0.6861568685320916j)
        40 (0.7153872255455767-0.6861568685320916j)
        41 (0.8331341618753201+0.5383229631320452j)
        42 (0.8331341618753201-0.5383229631320452j)
        43 (0.6701830619131026+0.7300572029385581j)
        44 (0.6701830619131026-0.7300572029385581j)
        45 (0.8658742980131764+0.48431875063231544j)
        46 (0.8658742980131764-0.48431875063231544j)
        47 (0.6223059154766839+0.7709722084480215j)
        48 (0.6223059154766839-0.7709722084480215j)
        49 (0.5719535879849889+0.8087425205066434j)
        50 (0.5719535879849889-0.8087425205066434j)
        51 (0.8951137460294047+0.4283044061929457j)
        52 (0.8951137460294047-0.4283044061929457j)
        53 (0.5193328204049903+0.8432217744454027j)
        54 (0.5193328204049903-0.8432217744454027j)
        55 (0.9207248128533412+0.3705068199042141j)
        56 (0.9207248128533412-0.3705068199042141j)
        57 (0.46465850700695943+0.8742770284347632j)
        58 (0.46465850700695943-0.8742770284347632j)
        59 (0.9425943804458727+0.31116194515065604j)
        60 (0.9425943804458727-0.31116194515065604j)
        61 (-0.2659231616491491+0.9512390729535296j)
        62 (-0.2659231616491491-0.9512390729535296j)
        63 (0.4081528934442288+0.9017891596220862j)
        64 (0.4081528934442288-0.9017891596220862j)
        65 (0.9606247774115534+0.2505139365561644j)
        66 (0.9606247774115534-0.2505139365561644j)
        67 (0.9747346342048573+0.1888141457593689j)
        68 (0.9747346342048573-0.1888141457593689j)
        69 (0.35004475520869627+0.9256532298451866j)
        70 (0.35004475520869627-0.9256532298451866j)
        71 (-0.20518134277364738+0.966326373881672j)
        72 (-0.20518134277364738-0.966326373881672j)
        73 (0.2905685546336416+0.9457788166930109j)
        74 (0.2905685546336416-0.9457788166930109j)
        75 (0.9848596842823707+0.1263199581194814j)
        76 (0.9848596842823707-0.1263199581194814j)
        77 (-0.9738266720335937+0.15542892061869676j)
        78 (-0.9738266720335937-0.15542892061869676j)
        79 (0.2299635761582389+0.9620903055655939j)
        80 (0.2299635761582389-0.9620903055655939j)
        81 (-0.14358986755051278+0.977547071822796j)
        82 (-0.14358986755051278-0.977547071822796j)
        83 (0.1684730408262214+0.9745271385958778j)
        84 (0.1684730408262214-0.9745271385958778j)
        85 (0.9909534640600726+0.06329346693748208j)
        86 (0.9909534640600726-0.06329346693748208j)
        87 (0.9929878610066416+0j)
        88 (-0.9816944521616785+0.09350551126383294j)
        89 (-0.9816944521616785-0.09350551126383294j)
        90 (0.10634320197349573+0.9830440167028471j)
        91 (0.10634320197349573-0.9830440167028471j)
        92 (-0.08139353360287407+0.9848536322040496j)
        93 (-0.08139353360287407-0.9848536322040496j)
        94 (0.043822424798379056+0.987611051554128j)
        95 (0.043822424798379056-0.987611051554128j)
        96 (-0.01883974695583218+0.9882138647642805j)
        97 (-0.01883974695583218-0.9882138647642805j)
        98 (-0.9856361368133812+0.031209912383584327j)
        99 (-0.9856361368133812-0.031209912383584327j)


        Is there some reason that this isn't good enough?







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 9 at 18:42









        saulspatzsaulspatz

        17.2k31435




        17.2k31435















            Popular posts from this blog

            Nidaros erkebispedøme

            Birsay

            Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...