Real Modulo Numbers in the Interval [0, 1), and Multiplication of The 2019 Stack Overflow...

Understanding the implication of what "well-defined" means for the operation in quotient group

Is flight data recorder erased after every flight?

Potential by Assembling Charges

Carnot-Caratheodory metric

How to manage monthly salary

Should I write numbers in words or as numerals when there are multiple next to each other?

What is this 4-propeller plane?

How can I fix this gap between bookcases I made?

What do hard-Brexiteers want with respect to the Irish border?

How to create dashed lines/arrows in Illustrator

How to change the limits of integration

In microwave frequencies, do you use a circulator when you need a (near) perfect diode?

Monty Hall variation

Where does the "burst of radiance" from Holy Weapon originate?

"To split hairs" vs "To be pedantic"

Is "plugging out" electronic devices an American expression?

Are there any other methods to apply to solving simultaneous equations?

Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints

aging parents with no investments

Why do some words that are not inflected have an umlaut?

Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?

How to answer pointed "are you quitting" questioning when I don't want them to suspect

Is three citations per paragraph excessive for undergraduate research paper?

Where to refill my bottle in India?



Real Modulo Numbers in the Interval [0, 1), and Multiplication of



The 2019 Stack Overflow Developer Survey Results Are InWhat are the rules for basic algebra when modulo real numbers are involvedDoes this number belong to the set of real numbers?What does the integer span of one irrational, and one (possibly irrational) real number look like in $mathbb{R}$?How to reverse modulo of a multiplication?Clarify a problem with prime and composite numbersDoes this prime generating way generate all the prime numbers?Why can we exchange numbers when working with modulo expressions?Does Arithmetic Need Non-Computable Real Numbers?Distribution of types of numbers in the real lineIs there any formal proof for the correctness of long multiplication/division method?












1












$begingroup$


Let's say we have a real number, A, in the interval [0, 1).
If we add another real number to it, it "Wraps" around back to zero.



So, for example:



Lets say: A = 5/13



If we multiply A by 2, we get: 10/13



If we multiple A by 3, we get: 2/13 (not 15/13)



If we multiple A by 4, we get 7/13 (not 20/13)



And so on...



My question is:



If given two such numbers, A and B, how can we find the smallest number, x, such that:



Ax = B



For example:



If A = 5/13 and B = 8/13, what do we need to multiply A by, to get B.



A solution for real numbers is preferable. However, if a solution does not exist for real numbers generally, then a solution for rational numbers should be sufficient.



Note that this problem is relevant to an algorithm that I'm writing. And I'd like to get it finished soon.



If I get my algorithm to work, and someone here provides a good solution, and that person (or people) have their name and contact details on their profile page, then I'm happy to give them a reference.










share|cite|improve this question











$endgroup$












  • $begingroup$
    My first thought would be to see if the (extended) Euclidean algorithm would be of any use: en.wikipedia.org/wiki/Modular_multiplicative_inverse
    $endgroup$
    – Matti P.
    Mar 21 at 6:29












  • $begingroup$
    For rational numbers $a/n$ and $b/n$, this is the same as solving the congruence $ax equiv b pmod n$. Solutions will not always exist (e.g., if $a = 2/4, b=1/4$).
    $endgroup$
    – FredH
    Mar 21 at 9:07










  • $begingroup$
    I assumed that there was a solution with O(1), my bad. I had a look at the algorithm you suggested, and if I understand it correctly, it should work for the example above, however, it's not as efficient as I would like.
    $endgroup$
    – Abs Spurdle
    Mar 21 at 21:28
















1












$begingroup$


Let's say we have a real number, A, in the interval [0, 1).
If we add another real number to it, it "Wraps" around back to zero.



So, for example:



Lets say: A = 5/13



If we multiply A by 2, we get: 10/13



If we multiple A by 3, we get: 2/13 (not 15/13)



If we multiple A by 4, we get 7/13 (not 20/13)



And so on...



My question is:



If given two such numbers, A and B, how can we find the smallest number, x, such that:



Ax = B



For example:



If A = 5/13 and B = 8/13, what do we need to multiply A by, to get B.



A solution for real numbers is preferable. However, if a solution does not exist for real numbers generally, then a solution for rational numbers should be sufficient.



Note that this problem is relevant to an algorithm that I'm writing. And I'd like to get it finished soon.



If I get my algorithm to work, and someone here provides a good solution, and that person (or people) have their name and contact details on their profile page, then I'm happy to give them a reference.










share|cite|improve this question











$endgroup$












  • $begingroup$
    My first thought would be to see if the (extended) Euclidean algorithm would be of any use: en.wikipedia.org/wiki/Modular_multiplicative_inverse
    $endgroup$
    – Matti P.
    Mar 21 at 6:29












  • $begingroup$
    For rational numbers $a/n$ and $b/n$, this is the same as solving the congruence $ax equiv b pmod n$. Solutions will not always exist (e.g., if $a = 2/4, b=1/4$).
    $endgroup$
    – FredH
    Mar 21 at 9:07










  • $begingroup$
    I assumed that there was a solution with O(1), my bad. I had a look at the algorithm you suggested, and if I understand it correctly, it should work for the example above, however, it's not as efficient as I would like.
    $endgroup$
    – Abs Spurdle
    Mar 21 at 21:28














1












1








1





$begingroup$


Let's say we have a real number, A, in the interval [0, 1).
If we add another real number to it, it "Wraps" around back to zero.



So, for example:



Lets say: A = 5/13



If we multiply A by 2, we get: 10/13



If we multiple A by 3, we get: 2/13 (not 15/13)



If we multiple A by 4, we get 7/13 (not 20/13)



And so on...



My question is:



If given two such numbers, A and B, how can we find the smallest number, x, such that:



Ax = B



For example:



If A = 5/13 and B = 8/13, what do we need to multiply A by, to get B.



A solution for real numbers is preferable. However, if a solution does not exist for real numbers generally, then a solution for rational numbers should be sufficient.



Note that this problem is relevant to an algorithm that I'm writing. And I'd like to get it finished soon.



If I get my algorithm to work, and someone here provides a good solution, and that person (or people) have their name and contact details on their profile page, then I'm happy to give them a reference.










share|cite|improve this question











$endgroup$




Let's say we have a real number, A, in the interval [0, 1).
If we add another real number to it, it "Wraps" around back to zero.



So, for example:



Lets say: A = 5/13



If we multiply A by 2, we get: 10/13



If we multiple A by 3, we get: 2/13 (not 15/13)



If we multiple A by 4, we get 7/13 (not 20/13)



And so on...



My question is:



If given two such numbers, A and B, how can we find the smallest number, x, such that:



Ax = B



For example:



If A = 5/13 and B = 8/13, what do we need to multiply A by, to get B.



A solution for real numbers is preferable. However, if a solution does not exist for real numbers generally, then a solution for rational numbers should be sufficient.



Note that this problem is relevant to an algorithm that I'm writing. And I'd like to get it finished soon.



If I get my algorithm to work, and someone here provides a good solution, and that person (or people) have their name and contact details on their profile page, then I'm happy to give them a reference.







number-theory modular-arithmetic






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 21 at 20:34







Abs Spurdle

















asked Mar 21 at 6:24









Abs SpurdleAbs Spurdle

113




113












  • $begingroup$
    My first thought would be to see if the (extended) Euclidean algorithm would be of any use: en.wikipedia.org/wiki/Modular_multiplicative_inverse
    $endgroup$
    – Matti P.
    Mar 21 at 6:29












  • $begingroup$
    For rational numbers $a/n$ and $b/n$, this is the same as solving the congruence $ax equiv b pmod n$. Solutions will not always exist (e.g., if $a = 2/4, b=1/4$).
    $endgroup$
    – FredH
    Mar 21 at 9:07










  • $begingroup$
    I assumed that there was a solution with O(1), my bad. I had a look at the algorithm you suggested, and if I understand it correctly, it should work for the example above, however, it's not as efficient as I would like.
    $endgroup$
    – Abs Spurdle
    Mar 21 at 21:28


















  • $begingroup$
    My first thought would be to see if the (extended) Euclidean algorithm would be of any use: en.wikipedia.org/wiki/Modular_multiplicative_inverse
    $endgroup$
    – Matti P.
    Mar 21 at 6:29












  • $begingroup$
    For rational numbers $a/n$ and $b/n$, this is the same as solving the congruence $ax equiv b pmod n$. Solutions will not always exist (e.g., if $a = 2/4, b=1/4$).
    $endgroup$
    – FredH
    Mar 21 at 9:07










  • $begingroup$
    I assumed that there was a solution with O(1), my bad. I had a look at the algorithm you suggested, and if I understand it correctly, it should work for the example above, however, it's not as efficient as I would like.
    $endgroup$
    – Abs Spurdle
    Mar 21 at 21:28
















$begingroup$
My first thought would be to see if the (extended) Euclidean algorithm would be of any use: en.wikipedia.org/wiki/Modular_multiplicative_inverse
$endgroup$
– Matti P.
Mar 21 at 6:29






$begingroup$
My first thought would be to see if the (extended) Euclidean algorithm would be of any use: en.wikipedia.org/wiki/Modular_multiplicative_inverse
$endgroup$
– Matti P.
Mar 21 at 6:29














$begingroup$
For rational numbers $a/n$ and $b/n$, this is the same as solving the congruence $ax equiv b pmod n$. Solutions will not always exist (e.g., if $a = 2/4, b=1/4$).
$endgroup$
– FredH
Mar 21 at 9:07




$begingroup$
For rational numbers $a/n$ and $b/n$, this is the same as solving the congruence $ax equiv b pmod n$. Solutions will not always exist (e.g., if $a = 2/4, b=1/4$).
$endgroup$
– FredH
Mar 21 at 9:07












$begingroup$
I assumed that there was a solution with O(1), my bad. I had a look at the algorithm you suggested, and if I understand it correctly, it should work for the example above, however, it's not as efficient as I would like.
$endgroup$
– Abs Spurdle
Mar 21 at 21:28




$begingroup$
I assumed that there was a solution with O(1), my bad. I had a look at the algorithm you suggested, and if I understand it correctly, it should work for the example above, however, it's not as efficient as I would like.
$endgroup$
– Abs Spurdle
Mar 21 at 21:28










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156420%2freal-modulo-numbers-in-the-interval-0-1-and-multiplication-of%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156420%2freal-modulo-numbers-in-the-interval-0-1-and-multiplication-of%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Magento 2 - Add success message with knockout Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Success / Error message on ajax request$.widget is not a function when loading a homepage after add custom jQuery on custom themeHow can bind jQuery to current document in Magento 2 When template load by ajaxRedirect page using plugin in Magento 2Magento 2 - Update quantity and totals of cart page without page reload?Magento 2: Quote data not loaded on knockout checkoutMagento 2 : I need to change add to cart success message after adding product into cart through pluginMagento 2.2.5 How to add additional products to cart from new checkout step?Magento 2 Add error/success message with knockoutCan't validate Post Code on checkout page

Fil:Tokke komm.svg

Where did Arya get these scars? Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar Manara Favourite questions and answers from the 1st quarter of 2019Why did Arya refuse to end it?Has the pronunciation of Arya Stark's name changed?Has Arya forgiven people?Why did Arya Stark lose her vision?Why can Arya still use the faces?Has the Narrow Sea become narrower?Does Arya Stark know how to make poisons outside of the House of Black and White?Why did Nymeria leave Arya?Why did Arya not kill the Lannister soldiers she encountered in the Riverlands?What is the current canonical age of Sansa, Bran and Arya Stark?