Taylor expansion about exp The 2019 Stack Overflow Developer Survey Results Are InFinding...
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
Is this food a bread or a loaf?
I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?
Why do UK politicians seemingly ignore opinion polls on Brexit?
Does it makes sense to buy a new cycle to learn riding?
How to manage monthly salary
How to deal with fear of taking dependencies
It's possible to achieve negative score?
"To split hairs" vs "To be pedantic"
Idiomatic way to prevent slicing?
A poker game description that does not feel gimmicky
Is three citations per paragraph excessive for undergraduate research paper?
"Riffle" two strings
Could JWST stay at L2 "forever"?
aging parents with no investments
Patience, young "Padovan"
"What time...?" or "At what time...?" - what is more grammatically correct?
Is flight data recorder erased after every flight?
What function has this graph?
Carnot-Caratheodory metric
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
What is the best strategy for white in this position?
What is a mixture ratio of propellant?
How are circuits which use complex ICs normally simulated?
Taylor expansion about exp
The 2019 Stack Overflow Developer Survey Results Are InFinding power series representation of $ int_0^{frac{pi }{2}} frac{1}{sqrt {1 - k^2sin^2{x}}};{dx}$Infinite Series $sumlimits_{n=1}^inftyfrac{x^{3n}}{(3n-1)!}$Iterated Sine… Further expansionAsymptotic expansion of $(1+epsilon)^{s/epsilon}$Convergence of a Taylor series expansion involving $tan^{-1}$Taylor series expansion and evaluating an integralSecond Order and Beyond for Multivariable Taylor SeriesSimplify $intlimits_{-infty}^Xexp[-(Ae^x+Bx+Cx^2)]mathrm dx$ and $sumlimits_{n=0}^inftyfrac{(-A)^n}{n!}e^{Dn^2-Kn}$Want to show that asymptotic expansion of $T[phi](x)=int_0^{2pi}sin(alpha |x-y|)phi(y)dx$ converges in the operator norm?How do you write the sines of a binary expansion as an infinite series?
$begingroup$
Recently I am trying to compute a Taylor expansion. I had known the result is
$$begin{aligned}
&expBig(-i(frac{h+delta h}{2}sigma_x+frac{J+delta J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)
\
&= expBig(-i(frac{h}{2}sigma_x+frac{J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)times cdots
\
×Bigg(I+ifrac{delta h}{2(h^2+J^2)^{3/2}}left((-h^2phi-J^2 sinphi)sigma_x+2 Jsqrt{h^2+J^2} sin^2frac{phi}{2}sigma_y+hJ(sinphi-phi)sigma_z right)
\
&+ifrac{delta J}{2(h^2+J^2)^{3/2}}left(hJ(sinphi-phi)sigma_z+2hsqrt{h^2+J^2}sin^2frac{phi}{2}sigma_y+(-J^2phi-h^2 sinphi)sigma_zright)
\
&+O(delta h^2) +O(delta J^2)Bigg)
end{aligned}$$
In above expression, $sigma$ indicates Pauli Matrices.
I cannot finish this and don't how to do this,some could help me?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Recently I am trying to compute a Taylor expansion. I had known the result is
$$begin{aligned}
&expBig(-i(frac{h+delta h}{2}sigma_x+frac{J+delta J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)
\
&= expBig(-i(frac{h}{2}sigma_x+frac{J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)times cdots
\
×Bigg(I+ifrac{delta h}{2(h^2+J^2)^{3/2}}left((-h^2phi-J^2 sinphi)sigma_x+2 Jsqrt{h^2+J^2} sin^2frac{phi}{2}sigma_y+hJ(sinphi-phi)sigma_z right)
\
&+ifrac{delta J}{2(h^2+J^2)^{3/2}}left(hJ(sinphi-phi)sigma_z+2hsqrt{h^2+J^2}sin^2frac{phi}{2}sigma_y+(-J^2phi-h^2 sinphi)sigma_zright)
\
&+O(delta h^2) +O(delta J^2)Bigg)
end{aligned}$$
In above expression, $sigma$ indicates Pauli Matrices.
I cannot finish this and don't how to do this,some could help me?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Recently I am trying to compute a Taylor expansion. I had known the result is
$$begin{aligned}
&expBig(-i(frac{h+delta h}{2}sigma_x+frac{J+delta J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)
\
&= expBig(-i(frac{h}{2}sigma_x+frac{J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)times cdots
\
×Bigg(I+ifrac{delta h}{2(h^2+J^2)^{3/2}}left((-h^2phi-J^2 sinphi)sigma_x+2 Jsqrt{h^2+J^2} sin^2frac{phi}{2}sigma_y+hJ(sinphi-phi)sigma_z right)
\
&+ifrac{delta J}{2(h^2+J^2)^{3/2}}left(hJ(sinphi-phi)sigma_z+2hsqrt{h^2+J^2}sin^2frac{phi}{2}sigma_y+(-J^2phi-h^2 sinphi)sigma_zright)
\
&+O(delta h^2) +O(delta J^2)Bigg)
end{aligned}$$
In above expression, $sigma$ indicates Pauli Matrices.
I cannot finish this and don't how to do this,some could help me?
sequences-and-series
$endgroup$
Recently I am trying to compute a Taylor expansion. I had known the result is
$$begin{aligned}
&expBig(-i(frac{h+delta h}{2}sigma_x+frac{J+delta J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)
\
&= expBig(-i(frac{h}{2}sigma_x+frac{J}{2}sigma_z)frac{phi}{sqrt{h^2+J^2}}Big)times cdots
\
×Bigg(I+ifrac{delta h}{2(h^2+J^2)^{3/2}}left((-h^2phi-J^2 sinphi)sigma_x+2 Jsqrt{h^2+J^2} sin^2frac{phi}{2}sigma_y+hJ(sinphi-phi)sigma_z right)
\
&+ifrac{delta J}{2(h^2+J^2)^{3/2}}left(hJ(sinphi-phi)sigma_z+2hsqrt{h^2+J^2}sin^2frac{phi}{2}sigma_y+(-J^2phi-h^2 sinphi)sigma_zright)
\
&+O(delta h^2) +O(delta J^2)Bigg)
end{aligned}$$
In above expression, $sigma$ indicates Pauli Matrices.
I cannot finish this and don't how to do this,some could help me?
sequences-and-series
sequences-and-series
asked Mar 21 at 4:56
YuXuanLiYuXuanLi
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156354%2ftaylor-expansion-about-exp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3156354%2ftaylor-expansion-about-exp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown