Proof of Raabe's testProving Absolute Convergence of a SeriesRoot test for seriesCorrect method of Proving...
Creating two special characters
Why is the "ls" command showing permissions of files in a FAT32 partition?
Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?
Can you use Vicious Mockery to win an argument or gain favours?
C++ copy constructor called at return
Microchip documentation does not label CAN buss pins on micro controller pinout diagram
Why do some congregations only make noise at certain occasions of Haman?
The Digit Triangles
Why Shazam when there is already Superman?
Strong empirical falsification of quantum mechanics based on vacuum energy density?
Is there a way to have vectors outlined in a Vector Plot?
How would you translate "more" for use as an interface button?
Why does this expression simplify as such?
What to do when eye contact makes your coworker uncomfortable?
It grows, but water kills it
Were Persian-Median kings illiterate?
Pre-mixing cryogenic fuels and using only one fuel tank
I found an audio circuit and I built it just fine, but I find it a bit too quiet. How do I amplify the output so that it is a bit louder?
Why is the Sun approximated as a black body at ~ 5800 K?
What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?
Shouldn’t conservatives embrace universal basic income?
Showing a sum is positive
Taxes on Dividends in a Roth IRA
Do we have to expect a queue for the shuttle from Watford Junction to Harry Potter Studio?
Proof of Raabe's test
Proving Absolute Convergence of a SeriesRoot test for seriesCorrect method of Proving Raabe's test?Series $sum_{n=2}^infty frac{14^n}{3^{3n+4}(3n+7)}$ Convergence or Divergence Using The Ratio TestIf ${a_n}$ is a positive, nonincreasing sequence such that $sum_{n=1}^infty a_n$ converges, then prove that $lim_{ntoinfty}2^na_{2^n} = 0$Comparison test of series with ln functionIf the series $sum_{n=1}^{infty} na_{n} $ converges, then $sum_{n=1}^{infty} na_{n+1} $ also converges?How to calculate limit for Raabe's test of $sum_{n=1}^infty a_n$ where $a_1=1, a_n=sin a_{n-1}$?Ratio test when checking the convergence of seriesProve that the series $sum_{n=1}^infty frac{e^nn!}{n^n}$ divergesConvergence or divergence of $sum_{n=1}^{infty} ln({1+ n^{-4/3}})$
$begingroup$
Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?
P.S. using Kummer's test doesn't count
calculus sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?
P.S. using Kummer's test doesn't count
calculus sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?
P.S. using Kummer's test doesn't count
calculus sequences-and-series limits
$endgroup$
Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?
P.S. using Kummer's test doesn't count
calculus sequences-and-series limits
calculus sequences-and-series limits
asked Jan 8 '14 at 13:24
GPerezGPerez
4,27611542
4,27611542
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then
$$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$
Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then
$$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$
so $sum a_n$ converges
$endgroup$
add a comment |
$begingroup$
The series even converges absoute, thus set $a_n:=left|a_nright|$
Now (if $n$ is big enough)
$$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$
This is equivalent to
$$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$
Because of $L>1$ the left side is bigger than zero, so
$$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$
That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum
$$sum b_n = sum left(n-1right)a_n-na_{n+1}$$
Which is a telescop-sum and thus it converges
But that implies that the sum over $a_n$
$$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
is convergent as well by the comparison test.
$endgroup$
add a comment |
$begingroup$
The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
$$L-varepsilon > 1.$$
There exists some $1 ll N=N(varepsilon)$ such that
$$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
for any $n geq N$, namely
$$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
for any $n geq N$. Since
$L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
$$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
$$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
Hence $sum a_n$ converges by the comparison test.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f631348%2fproof-of-raabes-test%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then
$$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$
Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then
$$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$
so $sum a_n$ converges
$endgroup$
add a comment |
$begingroup$
If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then
$$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$
Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then
$$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$
so $sum a_n$ converges
$endgroup$
add a comment |
$begingroup$
If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then
$$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$
Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then
$$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$
so $sum a_n$ converges
$endgroup$
If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then
$$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$
Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then
$$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$
so $sum a_n$ converges
answered Jan 8 '14 at 14:23
ziang chenziang chen
4,2711647
4,2711647
add a comment |
add a comment |
$begingroup$
The series even converges absoute, thus set $a_n:=left|a_nright|$
Now (if $n$ is big enough)
$$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$
This is equivalent to
$$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$
Because of $L>1$ the left side is bigger than zero, so
$$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$
That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum
$$sum b_n = sum left(n-1right)a_n-na_{n+1}$$
Which is a telescop-sum and thus it converges
But that implies that the sum over $a_n$
$$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
is convergent as well by the comparison test.
$endgroup$
add a comment |
$begingroup$
The series even converges absoute, thus set $a_n:=left|a_nright|$
Now (if $n$ is big enough)
$$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$
This is equivalent to
$$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$
Because of $L>1$ the left side is bigger than zero, so
$$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$
That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum
$$sum b_n = sum left(n-1right)a_n-na_{n+1}$$
Which is a telescop-sum and thus it converges
But that implies that the sum over $a_n$
$$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
is convergent as well by the comparison test.
$endgroup$
add a comment |
$begingroup$
The series even converges absoute, thus set $a_n:=left|a_nright|$
Now (if $n$ is big enough)
$$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$
This is equivalent to
$$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$
Because of $L>1$ the left side is bigger than zero, so
$$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$
That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum
$$sum b_n = sum left(n-1right)a_n-na_{n+1}$$
Which is a telescop-sum and thus it converges
But that implies that the sum over $a_n$
$$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
is convergent as well by the comparison test.
$endgroup$
The series even converges absoute, thus set $a_n:=left|a_nright|$
Now (if $n$ is big enough)
$$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$
This is equivalent to
$$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$
Because of $L>1$ the left side is bigger than zero, so
$$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$
That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum
$$sum b_n = sum left(n-1right)a_n-na_{n+1}$$
Which is a telescop-sum and thus it converges
But that implies that the sum over $a_n$
$$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
is convergent as well by the comparison test.
edited Jan 8 '14 at 14:49
answered Jan 8 '14 at 14:22
user127.0.0.1user127.0.0.1
6,00162139
6,00162139
add a comment |
add a comment |
$begingroup$
The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
$$L-varepsilon > 1.$$
There exists some $1 ll N=N(varepsilon)$ such that
$$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
for any $n geq N$, namely
$$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
for any $n geq N$. Since
$L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
$$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
$$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
Hence $sum a_n$ converges by the comparison test.
$endgroup$
add a comment |
$begingroup$
The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
$$L-varepsilon > 1.$$
There exists some $1 ll N=N(varepsilon)$ such that
$$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
for any $n geq N$, namely
$$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
for any $n geq N$. Since
$L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
$$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
$$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
Hence $sum a_n$ converges by the comparison test.
$endgroup$
add a comment |
$begingroup$
The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
$$L-varepsilon > 1.$$
There exists some $1 ll N=N(varepsilon)$ such that
$$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
for any $n geq N$, namely
$$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
for any $n geq N$. Since
$L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
$$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
$$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
Hence $sum a_n$ converges by the comparison test.
$endgroup$
The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
$$L-varepsilon > 1.$$
There exists some $1 ll N=N(varepsilon)$ such that
$$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
for any $n geq N$, namely
$$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
for any $n geq N$. Since
$L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
$$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
$$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
Hence $sum a_n$ converges by the comparison test.
answered Mar 13 at 6:34
QA NgôQA Ngô
5915
5915
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f631348%2fproof-of-raabes-test%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown