Proof of Raabe's testProving Absolute Convergence of a SeriesRoot test for seriesCorrect method of Proving...

Creating two special characters

Why is the "ls" command showing permissions of files in a FAT32 partition?

Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?

Can you use Vicious Mockery to win an argument or gain favours?

C++ copy constructor called at return

Microchip documentation does not label CAN buss pins on micro controller pinout diagram

Why do some congregations only make noise at certain occasions of Haman?

The Digit Triangles

Why Shazam when there is already Superman?

Strong empirical falsification of quantum mechanics based on vacuum energy density?

Is there a way to have vectors outlined in a Vector Plot?

How would you translate "more" for use as an interface button?

Why does this expression simplify as such?

What to do when eye contact makes your coworker uncomfortable?

It grows, but water kills it

Were Persian-Median kings illiterate?

Pre-mixing cryogenic fuels and using only one fuel tank

I found an audio circuit and I built it just fine, but I find it a bit too quiet. How do I amplify the output so that it is a bit louder?

Why is the Sun approximated as a black body at ~ 5800 K?

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Shouldn’t conservatives embrace universal basic income?

Showing a sum is positive

Taxes on Dividends in a Roth IRA

Do we have to expect a queue for the shuttle from Watford Junction to Harry Potter Studio?



Proof of Raabe's test


Proving Absolute Convergence of a SeriesRoot test for seriesCorrect method of Proving Raabe's test?Series $sum_{n=2}^infty frac{14^n}{3^{3n+4}(3n+7)}$ Convergence or Divergence Using The Ratio TestIf ${a_n}$ is a positive, nonincreasing sequence such that $sum_{n=1}^infty a_n$ converges, then prove that $lim_{ntoinfty}2^na_{2^n} = 0$Comparison test of series with ln functionIf the series $sum_{n=1}^{infty} na_{n} $ converges, then $sum_{n=1}^{infty} na_{n+1} $ also converges?How to calculate limit for Raabe's test of $sum_{n=1}^infty a_n$ where $a_1=1, a_n=sin a_{n-1}$?Ratio test when checking the convergence of seriesProve that the series $sum_{n=1}^infty frac{e^nn!}{n^n}$ divergesConvergence or divergence of $sum_{n=1}^{infty} ln({1+ n^{-4/3}})$













3












$begingroup$


Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?



P.S. using Kummer's test doesn't count










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
    Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?



    P.S. using Kummer's test doesn't count










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      2



      $begingroup$


      Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
      Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?



      P.S. using Kummer's test doesn't count










      share|cite|improve this question









      $endgroup$




      Let $sum a_n$ be a series of non-negative terms and let $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right)$$
      Prove that the series converges (resp. diverges) if $L > 1$ (resp. $L<1$). I've tried, for example, that when $L<1$, $$nleft(1-frac{a_{n+1}}{a_n}-Lright)= frac{n(a_n-a_{n+1}-La_n)}{a_n}gefrac{n(a_n-a_{n+1}-a_n)}{a_n}=frac{-na_{n+1}}{a_n}$$ and then using epsilons and the sort, but I can't get anywhere. Any tips?



      P.S. using Kummer's test doesn't count







      calculus sequences-and-series limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 8 '14 at 13:24









      GPerezGPerez

      4,27611542




      4,27611542






















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then



          $$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$



          Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then



          $$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$



          so $sum a_n$ converges






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            The series even converges absoute, thus set $a_n:=left|a_nright|$



            Now (if $n$ is big enough)
            $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$



            This is equivalent to
            $$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$



            Because of $L>1$ the left side is bigger than zero, so



            $$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$



            That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum



            $$sum b_n = sum left(n-1right)a_n-na_{n+1}$$



            Which is a telescop-sum and thus it converges



            But that implies that the sum over $a_n$
            $$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
            is convergent as well by the comparison test.






            share|cite|improve this answer











            $endgroup$





















              1












              $begingroup$

              The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
              $$L-varepsilon > 1.$$
              There exists some $1 ll N=N(varepsilon)$ such that
              $$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
              for any $n geq N$, namely
              $$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
              for any $n geq N$. Since
              $L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
              $$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
              for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
              $$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
              Hence $sum a_n$ converges by the comparison test.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f631348%2fproof-of-raabes-test%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                5












                $begingroup$

                If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then



                $$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$



                Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then



                $$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$



                so $sum a_n$ converges






                share|cite|improve this answer









                $endgroup$


















                  5












                  $begingroup$

                  If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then



                  $$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$



                  Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then



                  $$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$



                  so $sum a_n$ converges






                  share|cite|improve this answer









                  $endgroup$
















                    5












                    5








                    5





                    $begingroup$

                    If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then



                    $$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$



                    Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then



                    $$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$



                    so $sum a_n$ converges






                    share|cite|improve this answer









                    $endgroup$



                    If $L>1$, choose $epsilongt 0$, $L-epsilon>1$ then



                    $$1-frac{L-epsilon}{n} > frac{a_{n+1}}{a_n}$$



                    Choose $p$ such that $1lt plt L-epsilon$, $sumfrac1{n^p}$ converges. $b_n=frac1{n^p}$, if $n$ big enough, then



                    $$frac{b_{n+1}}{b_n}=(1-frac{1}{n+1})^p=1-frac{p}{n}+O(frac1{n^2})gt 1-frac{L-epsilon}{n}> frac{a_{n+1}}{a_n}$$



                    so $sum a_n$ converges







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 8 '14 at 14:23









                    ziang chenziang chen

                    4,2711647




                    4,2711647























                        4












                        $begingroup$

                        The series even converges absoute, thus set $a_n:=left|a_nright|$



                        Now (if $n$ is big enough)
                        $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$



                        This is equivalent to
                        $$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$



                        Because of $L>1$ the left side is bigger than zero, so



                        $$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$



                        That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum



                        $$sum b_n = sum left(n-1right)a_n-na_{n+1}$$



                        Which is a telescop-sum and thus it converges



                        But that implies that the sum over $a_n$
                        $$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
                        is convergent as well by the comparison test.






                        share|cite|improve this answer











                        $endgroup$


















                          4












                          $begingroup$

                          The series even converges absoute, thus set $a_n:=left|a_nright|$



                          Now (if $n$ is big enough)
                          $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$



                          This is equivalent to
                          $$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$



                          Because of $L>1$ the left side is bigger than zero, so



                          $$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$



                          That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum



                          $$sum b_n = sum left(n-1right)a_n-na_{n+1}$$



                          Which is a telescop-sum and thus it converges



                          But that implies that the sum over $a_n$
                          $$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
                          is convergent as well by the comparison test.






                          share|cite|improve this answer











                          $endgroup$
















                            4












                            4








                            4





                            $begingroup$

                            The series even converges absoute, thus set $a_n:=left|a_nright|$



                            Now (if $n$ is big enough)
                            $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$



                            This is equivalent to
                            $$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$



                            Because of $L>1$ the left side is bigger than zero, so



                            $$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$



                            That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum



                            $$sum b_n = sum left(n-1right)a_n-na_{n+1}$$



                            Which is a telescop-sum and thus it converges



                            But that implies that the sum over $a_n$
                            $$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
                            is convergent as well by the comparison test.






                            share|cite|improve this answer











                            $endgroup$



                            The series even converges absoute, thus set $a_n:=left|a_nright|$



                            Now (if $n$ is big enough)
                            $$L = lim_{ntoinfty}nleft(1-frac{a_{n+1}}{a_n}right) Longleftrightarrow frac{a_{n+1}}{a_n}leqfrac{n-L}{n}$$



                            This is equivalent to
                            $$left(L-1right)a_n leq left(n-1right)a_n-na_{n+1}$$



                            Because of $L>1$ the left side is bigger than zero, so



                            $$0leq left(n-1right)a_n-na_{n+1}Longleftrightarrow na_{n+1}leq left(n-1right)a_n$$



                            That means that $a_n$ is decreasing and bounded, so it does converges. Now define the sum



                            $$sum b_n = sum left(n-1right)a_n-na_{n+1}$$



                            Which is a telescop-sum and thus it converges



                            But that implies that the sum over $a_n$
                            $$sum a_n leq sum left(L-1right)a_n leq sum b_n$$
                            is convergent as well by the comparison test.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 8 '14 at 14:49

























                            answered Jan 8 '14 at 14:22









                            user127.0.0.1user127.0.0.1

                            6,00162139




                            6,00162139























                                1












                                $begingroup$

                                The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
                                $$L-varepsilon > 1.$$
                                There exists some $1 ll N=N(varepsilon)$ such that
                                $$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
                                for any $n geq N$, namely
                                $$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
                                for any $n geq N$. Since
                                $L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
                                $$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
                                for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
                                $$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
                                Hence $sum a_n$ converges by the comparison test.






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
                                  $$L-varepsilon > 1.$$
                                  There exists some $1 ll N=N(varepsilon)$ such that
                                  $$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
                                  for any $n geq N$, namely
                                  $$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
                                  for any $n geq N$. Since
                                  $L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
                                  $$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
                                  for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
                                  $$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
                                  Hence $sum a_n$ converges by the comparison test.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
                                    $$L-varepsilon > 1.$$
                                    There exists some $1 ll N=N(varepsilon)$ such that
                                    $$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
                                    for any $n geq N$, namely
                                    $$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
                                    for any $n geq N$. Since
                                    $L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
                                    $$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
                                    for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
                                    $$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
                                    Hence $sum a_n$ converges by the comparison test.






                                    share|cite|improve this answer









                                    $endgroup$



                                    The following is a new argument for the convergence part. Assume that $L>1$. Choose $varepsilon > 0$ small enough such that
                                    $$L-varepsilon > 1.$$
                                    There exists some $1 ll N=N(varepsilon)$ such that
                                    $$nBig( 1- frac {a_{n+1}}{a_n} Big) > L-varepsilon$$
                                    for any $n geq N$, namely
                                    $$frac {a_{n+1}}{a_n} < 1 - frac{L-varepsilon}n = frac{n-(L-varepsilon)}n$$
                                    for any $n geq N$. Since
                                    $L-varepsilon>1$, one can always choose $alpha >1$ in such a way that
                                    $$frac{n-(L-varepsilon)}n < Big( frac{n-1}n Big)^alpha$$
                                    for any $n gg 1$, say $n geq M > N$. Hence for large $n$, we obtain
                                    $$ a_{n+1} leq Big( frac{n-1}n Big)^alpha a_n leq Big( frac{n-2}n Big)^alpha a_{n-1} leq cdots leq Big( frac{M-1}n Big)^alpha a_M.$$
                                    Hence $sum a_n$ converges by the comparison test.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 13 at 6:34









                                    QA NgôQA Ngô

                                    5915




                                    5915






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f631348%2fproof-of-raabes-test%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Nidaros erkebispedøme

                                        Birsay

                                        Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...