Prove that $gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$gcd(b^x - 1, b^y - 1, b^ z- 1,…) = b^{gcd(x, y,...
Do Legal Documents Require Signing In Standard Pen Colors?
Why do we read the Megillah by night and by day?
Why does the Sun have different day lengths, but not the gas giants?
Why is so much work done on numerical verification of the Riemann Hypothesis?
Creature in Shazam mid-credits scene?
Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?
Melting point of aspirin, contradicting sources
Non-trope happy ending?
When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?
Is there a single word describing earning money through any means?
Pre-mixing cryogenic fuels and using only one fuel tank
Travelling outside the UK without a passport
Why do compilers behave differently when static_cast(ing) a function to void*?
Does the expansion of the universe explain why the universe doesn't collapse?
What is Cash Advance APR?
Yosemite Fire Rings - What to Expect?
Closed-form expression for certain product
Removing files under particular conditions (number of files, file age)
What is the evidence for the "tyranny of the majority problem" in a direct democracy context?
What if a revenant (monster) gains fire resistance?
How could a planet have erratic days?
How can "mimic phobia" be cured or prevented?
Drawing ramified coverings with tikz
Should I stop contributing to retirement accounts?
Prove that $gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$
$gcd(b^x - 1, b^y - 1, b^ z- 1,…) = b^{gcd(x, y, z,…)} -1$Prove that if $d$ divides $n$, then $2^d -1$ divides $2^n -1$Gcd number theory proof: $(a^n-1,a^m-1)= a^{(m,n)}-1$Show that $gcd(2^m-1, 2^n-1) = 2^ {gcd(m,n)} -1$GCD of two big numbersProve: $gcd(n^a-1,n^b-1)=n^{gcd(a,b)}-1$Computing $gcd$ of very large numbers with powersGCD of two polynomials in Mod 2Prove $gcd(k, l) = d Rightarrow gcd(2^k - 1, 2^l - 1) = 2^d - 1$number theory division of power for the case $(n^r −1)$ divides $(n^m −1)$ if and only if $r$ divides $m$.Prove: $gcd(a,b) = gcd(a, b + at)$.How to prove that $zgcd(a,b)=gcd(za,zb)$Prove that if $gcd(a,b)=1$, then $gcd(acdot b,c) = gcd(a,c)cdot gcd(b,c)$.Prove that if $gcd(a,b)=1$ then $gcd(ab,c) = gcd(a,c) gcd(b,c)$Prove that $gcd(a, b) = gcd(a, b + ma)$?Prove that $gcd(a, b) = gcd(b, a-b)$Prove $gcd(a,b,c)=gcd(gcd(a,b),c)$.Suppose $gcd(a,y)=s$ and $gcd(b,y)=t$. Prove that $gcd(gcd(a,b),y)=gcd(s,t)$.Prove that$gcd(a+b, a-b) = gcd(2a, a-b) = gcd(a+b, 2b) $Prove that $gcd(a,b) = gcd (a+b, gcd(a,b))$
$begingroup$
For all $a, m, n in mathbb{Z}^+$,
$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$
elementary-number-theory divisibility faq greatest-common-divisor
$endgroup$
add a comment |
$begingroup$
For all $a, m, n in mathbb{Z}^+$,
$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$
elementary-number-theory divisibility faq greatest-common-divisor
$endgroup$
6
$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17
1
$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56
add a comment |
$begingroup$
For all $a, m, n in mathbb{Z}^+$,
$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$
elementary-number-theory divisibility faq greatest-common-divisor
$endgroup$
For all $a, m, n in mathbb{Z}^+$,
$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$
elementary-number-theory divisibility faq greatest-common-divisor
elementary-number-theory divisibility faq greatest-common-divisor
edited Jul 5 '15 at 11:43
Martin Sleziak
44.9k10122275
44.9k10122275
asked Oct 22 '10 at 0:47
Juan Liner
6
$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17
1
$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56
add a comment |
6
$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17
1
$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56
6
6
$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17
$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17
1
1
$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56
$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56
add a comment |
7 Answers
7
active
oldest
votes
$begingroup$
$rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply
Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$
Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$
So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.
Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$
See also this post for a conceptual proof exploiting the innate structure - an order ideal.
$endgroup$
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
add a comment |
$begingroup$
Below is a proof which has the neat feature that it immediately specializes
to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.
E.g. for $rm m,n = 15,21$
$rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$
for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$
Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.
Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$
Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$
W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$
$begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
quadRightarrow &rm (m', n'), &=& rm (m', r') \
& &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
& &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
end{eqnarray}$
Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.
A deeper understanding comes when one studies Divisibility Sequences
and Divisor Theory.
$endgroup$
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
add a comment |
$begingroup$
Let $mge nge 1$. Apply Euclidean Algorithm.
$gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get
$gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$
$endgroup$
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
add a comment |
$begingroup$
More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$
Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.
$$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$
$$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$
$$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$
$endgroup$
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
add a comment |
$begingroup$
More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$
Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$
and use $nmid a,biff nmid (a,b)$ to prove:
$a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$
$a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$
$a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.
Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.
$(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).
$a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.
$a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$
$(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$
$endgroup$
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
add a comment |
$begingroup$
Let
$$gcd(a^n - 1, a^m - 1) = t$$
then
$$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
And thus
$$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
$forall,x,,yin mathbb{Z}$
According to the Extended Euclidean algorithm, we have
$$nx + my =gcd(n,m)$$
This follows
$$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$
Therefore
$$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$
$endgroup$
add a comment |
$begingroup$
Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:
If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
$$
left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
$$
and
$$
left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
$$
Thus, we have that
$$
left.p^g-1,middle|,Gright.
$$
For $xge0$,
$$
left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
$$
Therefore, we have that
$$
left.G,middle|,p^{ax}-1right.
$$
If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
$$
left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
$$
Therefore, for any $x,yge0$ so that $ax-byge0$,
$$
left.G,middle|,p^{ax-by}-1right.
$$
which means that
$$
left.G,middle|,p^g-1right.
$$
Putting all this together gives
$$
G=p^g-1
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f7473%2fprove-that-gcdan-1-am-1-a-gcdn-m-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply
Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$
Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$
So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.
Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$
See also this post for a conceptual proof exploiting the innate structure - an order ideal.
$endgroup$
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
add a comment |
$begingroup$
$rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply
Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$
Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$
So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.
Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$
See also this post for a conceptual proof exploiting the innate structure - an order ideal.
$endgroup$
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
add a comment |
$begingroup$
$rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply
Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$
Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$
So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.
Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$
See also this post for a conceptual proof exploiting the innate structure - an order ideal.
$endgroup$
$rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply
Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$
Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$
So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.
Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$
See also this post for a conceptual proof exploiting the innate structure - an order ideal.
edited Apr 13 '17 at 12:19
Community♦
1
1
answered Oct 23 '10 at 2:21
Bill DubuqueBill Dubuque
213k29195654
213k29195654
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
add a comment |
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
Sort of like the Fibonacci sequence!
$endgroup$
– cactus314
May 23 '15 at 12:03
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
$begingroup$
@john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
$endgroup$
– Bill Dubuque
May 23 '15 at 13:33
add a comment |
$begingroup$
Below is a proof which has the neat feature that it immediately specializes
to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.
E.g. for $rm m,n = 15,21$
$rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$
for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$
Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.
Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$
Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$
W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$
$begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
quadRightarrow &rm (m', n'), &=& rm (m', r') \
& &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
& &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
end{eqnarray}$
Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.
A deeper understanding comes when one studies Divisibility Sequences
and Divisor Theory.
$endgroup$
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
add a comment |
$begingroup$
Below is a proof which has the neat feature that it immediately specializes
to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.
E.g. for $rm m,n = 15,21$
$rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$
for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$
Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.
Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$
Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$
W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$
$begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
quadRightarrow &rm (m', n'), &=& rm (m', r') \
& &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
& &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
end{eqnarray}$
Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.
A deeper understanding comes when one studies Divisibility Sequences
and Divisor Theory.
$endgroup$
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
add a comment |
$begingroup$
Below is a proof which has the neat feature that it immediately specializes
to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.
E.g. for $rm m,n = 15,21$
$rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$
for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$
Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.
Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$
Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$
W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$
$begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
quadRightarrow &rm (m', n'), &=& rm (m', r') \
& &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
& &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
end{eqnarray}$
Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.
A deeper understanding comes when one studies Divisibility Sequences
and Divisor Theory.
$endgroup$
Below is a proof which has the neat feature that it immediately specializes
to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.
E.g. for $rm m,n = 15,21$
$rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$
for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$
Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.
Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$
Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$
W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$
$begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
quadRightarrow &rm (m', n'), &=& rm (m', r') \
& &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
& &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
end{eqnarray}$
Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.
A deeper understanding comes when one studies Divisibility Sequences
and Divisor Theory.
edited Jul 4 '15 at 19:25
answered Oct 22 '10 at 1:51
Bill DubuqueBill Dubuque
213k29195654
213k29195654
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
add a comment |
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
$endgroup$
– Pedro Tamaroff♦
Jun 18 '12 at 23:38
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
$begingroup$
@Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
$endgroup$
– Bill Dubuque
Jun 19 '12 at 0:17
add a comment |
$begingroup$
Let $mge nge 1$. Apply Euclidean Algorithm.
$gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get
$gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$
$endgroup$
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
add a comment |
$begingroup$
Let $mge nge 1$. Apply Euclidean Algorithm.
$gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get
$gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$
$endgroup$
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
add a comment |
$begingroup$
Let $mge nge 1$. Apply Euclidean Algorithm.
$gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get
$gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$
$endgroup$
Let $mge nge 1$. Apply Euclidean Algorithm.
$gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get
$gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$
edited Jan 8 '16 at 18:55
answered Oct 25 '15 at 10:23
user236182user236182
12k11333
12k11333
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
add a comment |
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
$begingroup$
And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:07
add a comment |
$begingroup$
More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$
Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.
$$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$
$$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$
$$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$
$endgroup$
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
add a comment |
$begingroup$
More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$
Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.
$$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$
$$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$
$$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$
$endgroup$
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
add a comment |
$begingroup$
More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$
Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.
$$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$
$$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$
$$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$
$endgroup$
More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$
Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.
$$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$
$$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$
$$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$
edited Dec 1 '17 at 10:31
answered Oct 4 '15 at 17:03
user236182user236182
12k11333
12k11333
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
add a comment |
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
$endgroup$
– Bill Dubuque
Dec 31 '16 at 2:03
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
$endgroup$
– Bill Dubuque
Jul 13 '17 at 20:44
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
$begingroup$
I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
$endgroup$
– Vmimi
Dec 2 '18 at 23:48
add a comment |
$begingroup$
More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$
Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$
and use $nmid a,biff nmid (a,b)$ to prove:
$a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$
$a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$
$a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.
Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.
$(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).
$a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.
$a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$
$(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$
$endgroup$
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
add a comment |
$begingroup$
More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$
Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$
and use $nmid a,biff nmid (a,b)$ to prove:
$a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$
$a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$
$a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.
Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.
$(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).
$a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.
$a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$
$(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$
$endgroup$
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
add a comment |
$begingroup$
More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$
Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$
and use $nmid a,biff nmid (a,b)$ to prove:
$a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$
$a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$
$a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.
Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.
$(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).
$a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.
$a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$
$(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$
$endgroup$
More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$
Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$
and use $nmid a,biff nmid (a,b)$ to prove:
$a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$
$a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$
$a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.
Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.
$(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).
$a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.
$a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$
$(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$
edited Jan 5 '18 at 23:28
community wiki
8 revs
user26486
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
add a comment |
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
$begingroup$
What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
$endgroup$
– Vmimi
Nov 30 '18 at 0:22
add a comment |
$begingroup$
Let
$$gcd(a^n - 1, a^m - 1) = t$$
then
$$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
And thus
$$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
$forall,x,,yin mathbb{Z}$
According to the Extended Euclidean algorithm, we have
$$nx + my =gcd(n,m)$$
This follows
$$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$
Therefore
$$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$
$endgroup$
add a comment |
$begingroup$
Let
$$gcd(a^n - 1, a^m - 1) = t$$
then
$$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
And thus
$$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
$forall,x,,yin mathbb{Z}$
According to the Extended Euclidean algorithm, we have
$$nx + my =gcd(n,m)$$
This follows
$$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$
Therefore
$$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$
$endgroup$
add a comment |
$begingroup$
Let
$$gcd(a^n - 1, a^m - 1) = t$$
then
$$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
And thus
$$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
$forall,x,,yin mathbb{Z}$
According to the Extended Euclidean algorithm, we have
$$nx + my =gcd(n,m)$$
This follows
$$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$
Therefore
$$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$
$endgroup$
Let
$$gcd(a^n - 1, a^m - 1) = t$$
then
$$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
And thus
$$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
$forall,x,,yin mathbb{Z}$
According to the Extended Euclidean algorithm, we have
$$nx + my =gcd(n,m)$$
This follows
$$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$
Therefore
$$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$
edited Dec 1 '17 at 14:40
answered Dec 1 '17 at 14:34
Darío A. GutiérrezDarío A. Gutiérrez
2,66441530
2,66441530
add a comment |
add a comment |
$begingroup$
Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:
If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
$$
left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
$$
and
$$
left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
$$
Thus, we have that
$$
left.p^g-1,middle|,Gright.
$$
For $xge0$,
$$
left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
$$
Therefore, we have that
$$
left.G,middle|,p^{ax}-1right.
$$
If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
$$
left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
$$
Therefore, for any $x,yge0$ so that $ax-byge0$,
$$
left.G,middle|,p^{ax-by}-1right.
$$
which means that
$$
left.G,middle|,p^g-1right.
$$
Putting all this together gives
$$
G=p^g-1
$$
$endgroup$
add a comment |
$begingroup$
Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:
If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
$$
left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
$$
and
$$
left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
$$
Thus, we have that
$$
left.p^g-1,middle|,Gright.
$$
For $xge0$,
$$
left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
$$
Therefore, we have that
$$
left.G,middle|,p^{ax}-1right.
$$
If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
$$
left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
$$
Therefore, for any $x,yge0$ so that $ax-byge0$,
$$
left.G,middle|,p^{ax-by}-1right.
$$
which means that
$$
left.G,middle|,p^g-1right.
$$
Putting all this together gives
$$
G=p^g-1
$$
$endgroup$
add a comment |
$begingroup$
Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:
If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
$$
left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
$$
and
$$
left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
$$
Thus, we have that
$$
left.p^g-1,middle|,Gright.
$$
For $xge0$,
$$
left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
$$
Therefore, we have that
$$
left.G,middle|,p^{ax}-1right.
$$
If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
$$
left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
$$
Therefore, for any $x,yge0$ so that $ax-byge0$,
$$
left.G,middle|,p^{ax-by}-1right.
$$
which means that
$$
left.G,middle|,p^g-1right.
$$
Putting all this together gives
$$
G=p^g-1
$$
$endgroup$
Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:
If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
$$
left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
$$
and
$$
left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
$$
Thus, we have that
$$
left.p^g-1,middle|,Gright.
$$
For $xge0$,
$$
left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
$$
Therefore, we have that
$$
left.G,middle|,p^{ax}-1right.
$$
If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
$$
left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
$$
Therefore, for any $x,yge0$ so that $ax-byge0$,
$$
left.G,middle|,p^{ax-by}-1right.
$$
which means that
$$
left.G,middle|,p^g-1right.
$$
Putting all this together gives
$$
G=p^g-1
$$
edited Mar 15 '18 at 14:32
answered Mar 15 '18 at 14:11
robjohn♦robjohn
269k27311638
269k27311638
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f7473%2fprove-that-gcdan-1-am-1-a-gcdn-m-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17
1
$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56