Differentiate $11x^5 + x^4y + xy^5=18$Finding centre of ellipse using a tangent line?Implicit differentiation...
Redundant comparison & "if" before assignment
Why is so much work done on numerical verification of the Riemann Hypothesis?
Approximating irrational number to rational number
Should I outline or discovery write my stories?
Why did the HMS Bounty go back to a time when whales are already rare?
Removing files under particular conditions (number of files, file age)
How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?
Energy measurement from position eigenstate
If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?
Travelling outside the UK without a passport
Finding NDSolve method details
How do I color the graph in datavisualization?
Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?
Is a bound state a stationary state?
Problem with TransformedDistribution
What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?
Creepy dinosaur pc game identification
Why should universal income be universal?
Do Legal Documents Require Signing In Standard Pen Colors?
Why do we read the Megillah by night and by day?
Is it better practice to read straight from sheet music rather than memorize it?
Does a 'pending' US visa application constitute a denial?
How could a planet have erratic days?
How to explain what's wrong with this application of the chain rule?
Differentiate $11x^5 + x^4y + xy^5=18$
Finding centre of ellipse using a tangent line?Implicit differentiation of trig functionsDifferentiate folowing expression, how much simplifying?implicit differentiation (y^2)/36Why can't one implicitly differentiate these two relations?How to differentiate this equationExtreme of an implicit expressionDerivative of $H(x)=[f(x)]^{x^2+1}-[cos(2x)]^{g(x)}$ for differentiable, positive $f(x), g(x)$How to differentiate the ideal gas equation?Implicit differentiation. Confusing assumption.
$begingroup$
I am not sure how to differentiate $11x^5 + x^4y + xy^5=18$. I have a little bit of experience with implicit differentiation, but I'm not sure how to handle terms where both variables are multiplied together.
I have tried
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
differentiating each term
$$frac{d}{dx} (11x^5)=11frac{d}{dy}(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4] = 4yx^3+x^4$$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4] = y^5 + 5xy^4$$
finding $frac{dy}{dx}$
$$frac{dy}{dx}=frac{-x}{y} = frac{-[4yx^3+x^4] + [y^5+5xy^4]}{55x^4}$$
According to the website I'm using, "WebWork", this is wrong.
calculus derivatives implicit-differentiation
$endgroup$
add a comment |
$begingroup$
I am not sure how to differentiate $11x^5 + x^4y + xy^5=18$. I have a little bit of experience with implicit differentiation, but I'm not sure how to handle terms where both variables are multiplied together.
I have tried
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
differentiating each term
$$frac{d}{dx} (11x^5)=11frac{d}{dy}(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4] = 4yx^3+x^4$$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4] = y^5 + 5xy^4$$
finding $frac{dy}{dx}$
$$frac{dy}{dx}=frac{-x}{y} = frac{-[4yx^3+x^4] + [y^5+5xy^4]}{55x^4}$$
According to the website I'm using, "WebWork", this is wrong.
calculus derivatives implicit-differentiation
$endgroup$
add a comment |
$begingroup$
I am not sure how to differentiate $11x^5 + x^4y + xy^5=18$. I have a little bit of experience with implicit differentiation, but I'm not sure how to handle terms where both variables are multiplied together.
I have tried
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
differentiating each term
$$frac{d}{dx} (11x^5)=11frac{d}{dy}(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4] = 4yx^3+x^4$$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4] = y^5 + 5xy^4$$
finding $frac{dy}{dx}$
$$frac{dy}{dx}=frac{-x}{y} = frac{-[4yx^3+x^4] + [y^5+5xy^4]}{55x^4}$$
According to the website I'm using, "WebWork", this is wrong.
calculus derivatives implicit-differentiation
$endgroup$
I am not sure how to differentiate $11x^5 + x^4y + xy^5=18$. I have a little bit of experience with implicit differentiation, but I'm not sure how to handle terms where both variables are multiplied together.
I have tried
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
differentiating each term
$$frac{d}{dx} (11x^5)=11frac{d}{dy}(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4] = 4yx^3+x^4$$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4] = y^5 + 5xy^4$$
finding $frac{dy}{dx}$
$$frac{dy}{dx}=frac{-x}{y} = frac{-[4yx^3+x^4] + [y^5+5xy^4]}{55x^4}$$
According to the website I'm using, "WebWork", this is wrong.
calculus derivatives implicit-differentiation
calculus derivatives implicit-differentiation
edited Mar 14 at 1:12
LuminousNutria
asked Mar 14 at 1:04
LuminousNutriaLuminousNutria
45512
45512
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
For each term involving both $x$ and $y$, differentiate the $x$ and $y$ parts separately and combine the two using the product rule:
$$(x^4y)'=x^4(y)'+(x^4)'y=x^4frac{dy}{dx}+4x^3y$$
$$(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y^5$$
Thus
$$55x^4+x^4frac{dy}{dx}+4x^3y+5xy^4frac{dy}{dx}+y^5=0$$
$$(x^4+5xy^4)frac{dy}{dx}=-(55x^4+4x^3y+y^5)$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5}{x^4+5xy^4}$$
$endgroup$
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
1
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
add a comment |
$begingroup$
differentiating each term
$$frac{d}{dx} (11x^5)=11(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4color{red}{frac{dy}{dx}}] $$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4color{red}{frac{dy}{dx}}] $$
$endgroup$
add a comment |
$begingroup$
This is how you could do it:
$11x^5+x^4y+xy^5=18$
Use the $frac{d}{dx}$ operator (not $frac{dy}{dx}$)
$55x^4+frac{d}{dx}(x^4y+xy^5)=0$
Now, use the product rule on each part in the brackets:
$55x^4+yfrac{d}{dx}x^4+x^4frac{dy}{dx}+y^5frac{d}{dx}x+xcdot4y^4frac{dy}{dx}=0$
$55x^4+ycdot3x^3+x^4frac{dy}{dx}+y^5+4xy^4frac{dy}{dx}=0$
$55x^4+3x^3y+y^5+frac{dy}{dx}(x^4+4xy^4)=0$
$frac{dy}{dx}(x^4+4xy^4)=-55x^4-3x^3y-y^5$
So, finally,
$frac{dy}{dx}=-frac{55x^4+3x^3y+y^5}{x^4+4xy^4}$
You were just using the operators wrong, I think
$endgroup$
add a comment |
$begingroup$
you actually apply the derivative with respect to the variable $x$ in both members and develop using your knowledge of the product's derivative and chain rule. Note that to calculate implicit derivatives you must think of for example $y = y (x)$. This justifies the passage I marked with (*). For examples $frac{d}{dx}(y^5)= 5y^4frac{dy}{dx}$ exactly because $y = y (x)$. Then
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
$$(55x^4)+ left( 4x^3 y + x^4 frac{dy}{dx} right) +left( y^5+5xy^4frac{dy}{dx}right) = 0 ,,,,,,,,,,(*)$$
$$left( x^4 frac{dy}{dx} right) +left(5xy^4frac{dy}{dx}right) = -55x^4-4x^3 y- y^5$$
$$left( x^4 +5xy^4right)frac{dy}{dx} = -55x^4-4x^3 y- y^5$$
$$frac{dy}{dx} = dfrac{-55x^4-4x^3 y- y^5}{left( x^4 +5xy^4right)}$$
$endgroup$
add a comment |
$begingroup$
I think that it is easy to remember the implicit function theorem.
$$color{red}{F(x,y)=0 implies frac{dy}{dx}=-frac{frac {partial F(x,y)} {partial x}} {frac {partial F(x,y)} {partial y}}}$$
$$F(x,y)=11x^5 + x^4y + xy^5-18=0$$
$$frac {partial F(x,y)} {partial x}=55x^4+4x^3y+y^5$$
$$frac {partial F(x,y)} {partial y}=x^4+5xy^4$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5 } {x^4+5xy^4 }$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147423%2fdifferentiate-11x5-x4y-xy5-18%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For each term involving both $x$ and $y$, differentiate the $x$ and $y$ parts separately and combine the two using the product rule:
$$(x^4y)'=x^4(y)'+(x^4)'y=x^4frac{dy}{dx}+4x^3y$$
$$(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y^5$$
Thus
$$55x^4+x^4frac{dy}{dx}+4x^3y+5xy^4frac{dy}{dx}+y^5=0$$
$$(x^4+5xy^4)frac{dy}{dx}=-(55x^4+4x^3y+y^5)$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5}{x^4+5xy^4}$$
$endgroup$
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
1
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
add a comment |
$begingroup$
For each term involving both $x$ and $y$, differentiate the $x$ and $y$ parts separately and combine the two using the product rule:
$$(x^4y)'=x^4(y)'+(x^4)'y=x^4frac{dy}{dx}+4x^3y$$
$$(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y^5$$
Thus
$$55x^4+x^4frac{dy}{dx}+4x^3y+5xy^4frac{dy}{dx}+y^5=0$$
$$(x^4+5xy^4)frac{dy}{dx}=-(55x^4+4x^3y+y^5)$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5}{x^4+5xy^4}$$
$endgroup$
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
1
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
add a comment |
$begingroup$
For each term involving both $x$ and $y$, differentiate the $x$ and $y$ parts separately and combine the two using the product rule:
$$(x^4y)'=x^4(y)'+(x^4)'y=x^4frac{dy}{dx}+4x^3y$$
$$(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y^5$$
Thus
$$55x^4+x^4frac{dy}{dx}+4x^3y+5xy^4frac{dy}{dx}+y^5=0$$
$$(x^4+5xy^4)frac{dy}{dx}=-(55x^4+4x^3y+y^5)$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5}{x^4+5xy^4}$$
$endgroup$
For each term involving both $x$ and $y$, differentiate the $x$ and $y$ parts separately and combine the two using the product rule:
$$(x^4y)'=x^4(y)'+(x^4)'y=x^4frac{dy}{dx}+4x^3y$$
$$(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y^5$$
Thus
$$55x^4+x^4frac{dy}{dx}+4x^3y+5xy^4frac{dy}{dx}+y^5=0$$
$$(x^4+5xy^4)frac{dy}{dx}=-(55x^4+4x^3y+y^5)$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5}{x^4+5xy^4}$$
edited Mar 14 at 1:22
answered Mar 14 at 1:15
Parcly TaxelParcly Taxel
44.7k1376110
44.7k1376110
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
1
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
add a comment |
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
1
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
$begingroup$
I don't understand why $(xy^5)'=x(y^5)'+(x)'y^5=5xy^4frac{dy}{dx}+y$. Shouldn't it equal $5xy^4frac{dy}{dx}+y^5$?
$endgroup$
– LuminousNutria
Mar 14 at 1:21
1
1
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
@LuminousNutria I typo'd.
$endgroup$
– Parcly Taxel
Mar 14 at 1:22
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
$begingroup$
Alright, thanks for clearing that up.
$endgroup$
– LuminousNutria
Mar 14 at 1:23
add a comment |
$begingroup$
differentiating each term
$$frac{d}{dx} (11x^5)=11(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4color{red}{frac{dy}{dx}}] $$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4color{red}{frac{dy}{dx}}] $$
$endgroup$
add a comment |
$begingroup$
differentiating each term
$$frac{d}{dx} (11x^5)=11(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4color{red}{frac{dy}{dx}}] $$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4color{red}{frac{dy}{dx}}] $$
$endgroup$
add a comment |
$begingroup$
differentiating each term
$$frac{d}{dx} (11x^5)=11(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4color{red}{frac{dy}{dx}}] $$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4color{red}{frac{dy}{dx}}] $$
$endgroup$
differentiating each term
$$frac{d}{dx} (11x^5)=11(5x^4) = 55x^4$$
$$frac{d}{dx} (x^4y) = [4x^3 cdot y] + [1 cdot x^4color{red}{frac{dy}{dx}}] $$
$$frac{d}{dx}(xy^5) = [1 cdot y^5] + [x cdot 5y^4color{red}{frac{dy}{dx}}] $$
edited Mar 14 at 1:29
answered Mar 14 at 1:13
Siong Thye GohSiong Thye Goh
103k1468119
103k1468119
add a comment |
add a comment |
$begingroup$
This is how you could do it:
$11x^5+x^4y+xy^5=18$
Use the $frac{d}{dx}$ operator (not $frac{dy}{dx}$)
$55x^4+frac{d}{dx}(x^4y+xy^5)=0$
Now, use the product rule on each part in the brackets:
$55x^4+yfrac{d}{dx}x^4+x^4frac{dy}{dx}+y^5frac{d}{dx}x+xcdot4y^4frac{dy}{dx}=0$
$55x^4+ycdot3x^3+x^4frac{dy}{dx}+y^5+4xy^4frac{dy}{dx}=0$
$55x^4+3x^3y+y^5+frac{dy}{dx}(x^4+4xy^4)=0$
$frac{dy}{dx}(x^4+4xy^4)=-55x^4-3x^3y-y^5$
So, finally,
$frac{dy}{dx}=-frac{55x^4+3x^3y+y^5}{x^4+4xy^4}$
You were just using the operators wrong, I think
$endgroup$
add a comment |
$begingroup$
This is how you could do it:
$11x^5+x^4y+xy^5=18$
Use the $frac{d}{dx}$ operator (not $frac{dy}{dx}$)
$55x^4+frac{d}{dx}(x^4y+xy^5)=0$
Now, use the product rule on each part in the brackets:
$55x^4+yfrac{d}{dx}x^4+x^4frac{dy}{dx}+y^5frac{d}{dx}x+xcdot4y^4frac{dy}{dx}=0$
$55x^4+ycdot3x^3+x^4frac{dy}{dx}+y^5+4xy^4frac{dy}{dx}=0$
$55x^4+3x^3y+y^5+frac{dy}{dx}(x^4+4xy^4)=0$
$frac{dy}{dx}(x^4+4xy^4)=-55x^4-3x^3y-y^5$
So, finally,
$frac{dy}{dx}=-frac{55x^4+3x^3y+y^5}{x^4+4xy^4}$
You were just using the operators wrong, I think
$endgroup$
add a comment |
$begingroup$
This is how you could do it:
$11x^5+x^4y+xy^5=18$
Use the $frac{d}{dx}$ operator (not $frac{dy}{dx}$)
$55x^4+frac{d}{dx}(x^4y+xy^5)=0$
Now, use the product rule on each part in the brackets:
$55x^4+yfrac{d}{dx}x^4+x^4frac{dy}{dx}+y^5frac{d}{dx}x+xcdot4y^4frac{dy}{dx}=0$
$55x^4+ycdot3x^3+x^4frac{dy}{dx}+y^5+4xy^4frac{dy}{dx}=0$
$55x^4+3x^3y+y^5+frac{dy}{dx}(x^4+4xy^4)=0$
$frac{dy}{dx}(x^4+4xy^4)=-55x^4-3x^3y-y^5$
So, finally,
$frac{dy}{dx}=-frac{55x^4+3x^3y+y^5}{x^4+4xy^4}$
You were just using the operators wrong, I think
$endgroup$
This is how you could do it:
$11x^5+x^4y+xy^5=18$
Use the $frac{d}{dx}$ operator (not $frac{dy}{dx}$)
$55x^4+frac{d}{dx}(x^4y+xy^5)=0$
Now, use the product rule on each part in the brackets:
$55x^4+yfrac{d}{dx}x^4+x^4frac{dy}{dx}+y^5frac{d}{dx}x+xcdot4y^4frac{dy}{dx}=0$
$55x^4+ycdot3x^3+x^4frac{dy}{dx}+y^5+4xy^4frac{dy}{dx}=0$
$55x^4+3x^3y+y^5+frac{dy}{dx}(x^4+4xy^4)=0$
$frac{dy}{dx}(x^4+4xy^4)=-55x^4-3x^3y-y^5$
So, finally,
$frac{dy}{dx}=-frac{55x^4+3x^3y+y^5}{x^4+4xy^4}$
You were just using the operators wrong, I think
edited Mar 14 at 1:22
answered Mar 14 at 1:15
SethSeth
54314
54314
add a comment |
add a comment |
$begingroup$
you actually apply the derivative with respect to the variable $x$ in both members and develop using your knowledge of the product's derivative and chain rule. Note that to calculate implicit derivatives you must think of for example $y = y (x)$. This justifies the passage I marked with (*). For examples $frac{d}{dx}(y^5)= 5y^4frac{dy}{dx}$ exactly because $y = y (x)$. Then
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
$$(55x^4)+ left( 4x^3 y + x^4 frac{dy}{dx} right) +left( y^5+5xy^4frac{dy}{dx}right) = 0 ,,,,,,,,,,(*)$$
$$left( x^4 frac{dy}{dx} right) +left(5xy^4frac{dy}{dx}right) = -55x^4-4x^3 y- y^5$$
$$left( x^4 +5xy^4right)frac{dy}{dx} = -55x^4-4x^3 y- y^5$$
$$frac{dy}{dx} = dfrac{-55x^4-4x^3 y- y^5}{left( x^4 +5xy^4right)}$$
$endgroup$
add a comment |
$begingroup$
you actually apply the derivative with respect to the variable $x$ in both members and develop using your knowledge of the product's derivative and chain rule. Note that to calculate implicit derivatives you must think of for example $y = y (x)$. This justifies the passage I marked with (*). For examples $frac{d}{dx}(y^5)= 5y^4frac{dy}{dx}$ exactly because $y = y (x)$. Then
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
$$(55x^4)+ left( 4x^3 y + x^4 frac{dy}{dx} right) +left( y^5+5xy^4frac{dy}{dx}right) = 0 ,,,,,,,,,,(*)$$
$$left( x^4 frac{dy}{dx} right) +left(5xy^4frac{dy}{dx}right) = -55x^4-4x^3 y- y^5$$
$$left( x^4 +5xy^4right)frac{dy}{dx} = -55x^4-4x^3 y- y^5$$
$$frac{dy}{dx} = dfrac{-55x^4-4x^3 y- y^5}{left( x^4 +5xy^4right)}$$
$endgroup$
add a comment |
$begingroup$
you actually apply the derivative with respect to the variable $x$ in both members and develop using your knowledge of the product's derivative and chain rule. Note that to calculate implicit derivatives you must think of for example $y = y (x)$. This justifies the passage I marked with (*). For examples $frac{d}{dx}(y^5)= 5y^4frac{dy}{dx}$ exactly because $y = y (x)$. Then
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
$$(55x^4)+ left( 4x^3 y + x^4 frac{dy}{dx} right) +left( y^5+5xy^4frac{dy}{dx}right) = 0 ,,,,,,,,,,(*)$$
$$left( x^4 frac{dy}{dx} right) +left(5xy^4frac{dy}{dx}right) = -55x^4-4x^3 y- y^5$$
$$left( x^4 +5xy^4right)frac{dy}{dx} = -55x^4-4x^3 y- y^5$$
$$frac{dy}{dx} = dfrac{-55x^4-4x^3 y- y^5}{left( x^4 +5xy^4right)}$$
$endgroup$
you actually apply the derivative with respect to the variable $x$ in both members and develop using your knowledge of the product's derivative and chain rule. Note that to calculate implicit derivatives you must think of for example $y = y (x)$. This justifies the passage I marked with (*). For examples $frac{d}{dx}(y^5)= 5y^4frac{dy}{dx}$ exactly because $y = y (x)$. Then
$$frac{d}{dx}(11x^5 + x^4y+xy^5) = frac{d}{dx}(18)$$
$$frac{d}{dx}(11x^5)+frac{d}{dx}(x^4y) + frac{d}{dx}(xy^5)=0$$
$$(55x^4)+ left( 4x^3 y + x^4 frac{dy}{dx} right) +left( y^5+5xy^4frac{dy}{dx}right) = 0 ,,,,,,,,,,(*)$$
$$left( x^4 frac{dy}{dx} right) +left(5xy^4frac{dy}{dx}right) = -55x^4-4x^3 y- y^5$$
$$left( x^4 +5xy^4right)frac{dy}{dx} = -55x^4-4x^3 y- y^5$$
$$frac{dy}{dx} = dfrac{-55x^4-4x^3 y- y^5}{left( x^4 +5xy^4right)}$$
answered Mar 14 at 1:28
Ricardo FreireRicardo Freire
562211
562211
add a comment |
add a comment |
$begingroup$
I think that it is easy to remember the implicit function theorem.
$$color{red}{F(x,y)=0 implies frac{dy}{dx}=-frac{frac {partial F(x,y)} {partial x}} {frac {partial F(x,y)} {partial y}}}$$
$$F(x,y)=11x^5 + x^4y + xy^5-18=0$$
$$frac {partial F(x,y)} {partial x}=55x^4+4x^3y+y^5$$
$$frac {partial F(x,y)} {partial y}=x^4+5xy^4$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5 } {x^4+5xy^4 }$$
$endgroup$
add a comment |
$begingroup$
I think that it is easy to remember the implicit function theorem.
$$color{red}{F(x,y)=0 implies frac{dy}{dx}=-frac{frac {partial F(x,y)} {partial x}} {frac {partial F(x,y)} {partial y}}}$$
$$F(x,y)=11x^5 + x^4y + xy^5-18=0$$
$$frac {partial F(x,y)} {partial x}=55x^4+4x^3y+y^5$$
$$frac {partial F(x,y)} {partial y}=x^4+5xy^4$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5 } {x^4+5xy^4 }$$
$endgroup$
add a comment |
$begingroup$
I think that it is easy to remember the implicit function theorem.
$$color{red}{F(x,y)=0 implies frac{dy}{dx}=-frac{frac {partial F(x,y)} {partial x}} {frac {partial F(x,y)} {partial y}}}$$
$$F(x,y)=11x^5 + x^4y + xy^5-18=0$$
$$frac {partial F(x,y)} {partial x}=55x^4+4x^3y+y^5$$
$$frac {partial F(x,y)} {partial y}=x^4+5xy^4$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5 } {x^4+5xy^4 }$$
$endgroup$
I think that it is easy to remember the implicit function theorem.
$$color{red}{F(x,y)=0 implies frac{dy}{dx}=-frac{frac {partial F(x,y)} {partial x}} {frac {partial F(x,y)} {partial y}}}$$
$$F(x,y)=11x^5 + x^4y + xy^5-18=0$$
$$frac {partial F(x,y)} {partial x}=55x^4+4x^3y+y^5$$
$$frac {partial F(x,y)} {partial y}=x^4+5xy^4$$
$$frac{dy}{dx}=-frac{55x^4+4x^3y+y^5 } {x^4+5xy^4 }$$
answered Mar 14 at 5:44
Claude LeiboviciClaude Leibovici
124k1158135
124k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3147423%2fdifferentiate-11x5-x4y-xy5-18%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown