Prove that $gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$gcd(b^x - 1, b^y - 1, b^ z- 1,…) = b^{gcd(x, y,...

Which one is correct as adjective “protruding” or “protruded”?

How to explain what's wrong with this application of the chain rule?

On a tidally locked planet, would time be quantized?

Open a doc from terminal, but not by its name

Is there a single word describing earning money through any means?

Where does the bonus feat in the cleric starting package come from?

Is a bound state a stationary state?

What prevents the use of a multi-segment ILS for non-straight approaches?

Why do we read the Megillah by night and by day?

What should you do if you miss a job interview (deliberately)?

Is it possible to put a rectangle as background in the author section?

Are the IPv6 address space and IPv4 address space completely disjoint?

How can "mimic phobia" be cured or prevented?

250 Floor Tower

Why is it that I can sometimes guess the next note?

I am looking for the correct translation of love for the phrase "in this sign love"

What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?

Did arcade monitors have same pixel aspect ratio as TV sets?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Is it better practice to read straight from sheet music rather than memorize it?

Redundant comparison & "if" before assignment

Closed-form expression for certain product

Create all possible words using a set or letters

Travelling outside the UK without a passport



Prove that $gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$


$gcd(b^x - 1, b^y - 1, b^ z- 1,…) = b^{gcd(x, y, z,…)} -1$Prove that if $d$ divides $n$, then $2^d -1$ divides $2^n -1$Gcd number theory proof: $(a^n-1,a^m-1)= a^{(m,n)}-1$Show that $gcd(2^m-1, 2^n-1) = 2^ {gcd(m,n)} -1$GCD of two big numbersProve: $gcd(n^a-1,n^b-1)=n^{gcd(a,b)}-1$Computing $gcd$ of very large numbers with powersGCD of two polynomials in Mod 2Prove $gcd(k, l) = d Rightarrow gcd(2^k - 1, 2^l - 1) = 2^d - 1$number theory division of power for the case $(n^r −1)$ divides $(n^m −1)$ if and only if $r$ divides $m$.Prove: $gcd(a,b) = gcd(a, b + at)$.How to prove that $zgcd(a,b)=gcd(za,zb)$Prove that if $gcd(a,b)=1$, then $gcd(acdot b,c) = gcd(a,c)cdot gcd(b,c)$.Prove that if $gcd(a,b)=1$ then $gcd(ab,c) = gcd(a,c) gcd(b,c)$Prove that $gcd(a, b) = gcd(a, b + ma)$?Prove that $gcd(a, b) = gcd(b, a-b)$Prove $gcd(a,b,c)=gcd(gcd(a,b),c)$.Suppose $gcd(a,y)=s$ and $gcd(b,y)=t$. Prove that $gcd(gcd(a,b),y)=gcd(s,t)$.Prove that$gcd(a+b, a-b) = gcd(2a, a-b) = gcd(a+b, 2b) $Prove that $gcd(a,b) = gcd (a+b, gcd(a,b))$













123












$begingroup$


For all $a, m, n in mathbb{Z}^+$,



$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$










share|cite|improve this question











$endgroup$








  • 6




    $begingroup$
    Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
    $endgroup$
    – Qiaochu Yuan
    Dec 4 '10 at 14:17






  • 1




    $begingroup$
    Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
    $endgroup$
    – lab bhattacharjee
    Jul 29 '12 at 16:56


















123












$begingroup$


For all $a, m, n in mathbb{Z}^+$,



$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$










share|cite|improve this question











$endgroup$








  • 6




    $begingroup$
    Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
    $endgroup$
    – Qiaochu Yuan
    Dec 4 '10 at 14:17






  • 1




    $begingroup$
    Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
    $endgroup$
    – lab bhattacharjee
    Jul 29 '12 at 16:56
















123












123








123


62



$begingroup$


For all $a, m, n in mathbb{Z}^+$,



$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$










share|cite|improve this question











$endgroup$




For all $a, m, n in mathbb{Z}^+$,



$$gcd(a^n - 1, a^m - 1) = a^{gcd(n, m)} - 1$$







elementary-number-theory divisibility faq greatest-common-divisor






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 5 '15 at 11:43









Martin Sleziak

44.9k10122275




44.9k10122275










asked Oct 22 '10 at 0:47







Juan Liner















  • 6




    $begingroup$
    Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
    $endgroup$
    – Qiaochu Yuan
    Dec 4 '10 at 14:17






  • 1




    $begingroup$
    Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
    $endgroup$
    – lab bhattacharjee
    Jul 29 '12 at 16:56
















  • 6




    $begingroup$
    Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
    $endgroup$
    – Qiaochu Yuan
    Dec 4 '10 at 14:17






  • 1




    $begingroup$
    Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
    $endgroup$
    – lab bhattacharjee
    Jul 29 '12 at 16:56










6




6




$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17




$begingroup$
Another question (math.stackexchange.com/questions/11567/…) was closed as a duplicate of this one where there is a second solution.
$endgroup$
– Qiaochu Yuan
Dec 4 '10 at 14:17




1




1




$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56






$begingroup$
Find here: Number Theory for Mathematical Contests, Example#245, Page#36.
$endgroup$
– lab bhattacharjee
Jul 29 '12 at 16:56












7 Answers
7






active

oldest

votes


















63












$begingroup$

$rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply



Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$



Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$

So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.

Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$



See also this post for a conceptual proof exploiting the innate structure - an order ideal.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Sort of like the Fibonacci sequence!
    $endgroup$
    – cactus314
    May 23 '15 at 12:03










  • $begingroup$
    @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
    $endgroup$
    – Bill Dubuque
    May 23 '15 at 13:33





















34












$begingroup$

Below is a proof which has the neat feature that it immediately specializes
to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.



E.g. for $rm m,n = 15,21$



$rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$



for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$



Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.



Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$



Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$



W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$



$begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
quadRightarrow &rm (m', n'), &=& rm (m', r') \
& &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
& &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
end{eqnarray}$



Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.



A deeper understanding comes when one studies Divisibility Sequences
and Divisor Theory.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
    $endgroup$
    – Pedro Tamaroff
    Jun 18 '12 at 23:38












  • $begingroup$
    @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
    $endgroup$
    – Bill Dubuque
    Jun 19 '12 at 0:17





















13












$begingroup$

Let $mge nge 1$. Apply Euclidean Algorithm.



$gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get



$gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
    $endgroup$
    – Bill Dubuque
    Dec 31 '16 at 2:07





















8












$begingroup$

More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$



Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.



$$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$



$$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$



$$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
    $endgroup$
    – Bill Dubuque
    Dec 31 '16 at 2:03












  • $begingroup$
    Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
    $endgroup$
    – Bill Dubuque
    Jul 13 '17 at 20:44












  • $begingroup$
    I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
    $endgroup$
    – Vmimi
    Dec 2 '18 at 23:48



















8












$begingroup$

More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$



Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$



and use $nmid a,biff nmid (a,b)$ to prove:



$a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$



$a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$



$a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.



Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.



$(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).



$a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.



$a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$



$(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
    $endgroup$
    – Vmimi
    Nov 30 '18 at 0:22





















5












$begingroup$

Let
$$gcd(a^n - 1, a^m - 1) = t$$
then
$$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
And thus
$$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
$forall,x,,yin mathbb{Z}$



According to the Extended Euclidean algorithm, we have
$$nx + my =gcd(n,m)$$
This follows
$$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$



Therefore
$$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:





    If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
    $$
    left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
    $$
    and
    $$
    left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
    $$
    Thus, we have that
    $$
    left.p^g-1,middle|,Gright.
    $$





    For $xge0$,
    $$
    left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
    $$
    Therefore, we have that
    $$
    left.G,middle|,p^{ax}-1right.
    $$
    If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
    $$
    left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
    $$
    Therefore, for any $x,yge0$ so that $ax-byge0$,
    $$
    left.G,middle|,p^{ax-by}-1right.
    $$
    which means that
    $$
    left.G,middle|,p^g-1right.
    $$





    Putting all this together gives
    $$
    G=p^g-1
    $$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f7473%2fprove-that-gcdan-1-am-1-a-gcdn-m-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown
























      7 Answers
      7






      active

      oldest

      votes








      7 Answers
      7






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      63












      $begingroup$

      $rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply



      Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$



      Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$

      So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.

      Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$



      See also this post for a conceptual proof exploiting the innate structure - an order ideal.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Sort of like the Fibonacci sequence!
        $endgroup$
        – cactus314
        May 23 '15 at 12:03










      • $begingroup$
        @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
        $endgroup$
        – Bill Dubuque
        May 23 '15 at 13:33


















      63












      $begingroup$

      $rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply



      Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$



      Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$

      So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.

      Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$



      See also this post for a conceptual proof exploiting the innate structure - an order ideal.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Sort of like the Fibonacci sequence!
        $endgroup$
        – cactus314
        May 23 '15 at 12:03










      • $begingroup$
        @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
        $endgroup$
        – Bill Dubuque
        May 23 '15 at 13:33
















      63












      63








      63





      $begingroup$

      $rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply



      Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$



      Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$

      So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.

      Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$



      See also this post for a conceptual proof exploiting the innate structure - an order ideal.






      share|cite|improve this answer











      $endgroup$



      $rm f_{,n}: := a^n!-!1 = a^{n-m} : color{#c00}{(a^m!-!1)} + color{#0a0}{a^{n-m}!-!1}. $ Hence $rm: {f_{,n}! = color{#0a0}{f_{,n-m}}! + k color{#c00}{f_{,m}}},, kinmathbb Z.:$ Apply



      Theorem $: $ If $rm f_{, n}: $ is an integer sequence with $rm f_{0} =, 0,: $ $rm :{ f_{,n}!equiv color{#0a0}{f_{,n-m}} (mod color{#c00}{f_{,m})}} $ for $rm: n > m, $ then $rm: (f_{,n},f_{,m}) = f_{,(n,:m)} : $ where $rm (i,:j) $ denotes $rm gcd(i,:j).:$



      Proof $ $ By induction on $rm:n + m:$. The theorem is trivially true if $rm n = m $ or $rm n = 0 $ or $rm: m = 0.:$

      So we may assume $rm:n > m > 0:$.$ $ Note $rm (f_{,n},f_{,m}) = (f_{,n-m},f_{,m}) $ follows from the hypothesis.

      Since $rm (n-m)+m < n+m, $ induction yields $rm (f_{,n-m},f_{,m}), =, f_{,(n-m,:m)} =, f_{,(n,:m)}.$



      See also this post for a conceptual proof exploiting the innate structure - an order ideal.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Apr 13 '17 at 12:19









      Community

      1




      1










      answered Oct 23 '10 at 2:21









      Bill DubuqueBill Dubuque

      213k29195654




      213k29195654












      • $begingroup$
        Sort of like the Fibonacci sequence!
        $endgroup$
        – cactus314
        May 23 '15 at 12:03










      • $begingroup$
        @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
        $endgroup$
        – Bill Dubuque
        May 23 '15 at 13:33




















      • $begingroup$
        Sort of like the Fibonacci sequence!
        $endgroup$
        – cactus314
        May 23 '15 at 12:03










      • $begingroup$
        @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
        $endgroup$
        – Bill Dubuque
        May 23 '15 at 13:33


















      $begingroup$
      Sort of like the Fibonacci sequence!
      $endgroup$
      – cactus314
      May 23 '15 at 12:03




      $begingroup$
      Sort of like the Fibonacci sequence!
      $endgroup$
      – cactus314
      May 23 '15 at 12:03












      $begingroup$
      @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
      $endgroup$
      – Bill Dubuque
      May 23 '15 at 13:33






      $begingroup$
      @john Yes, they are both strong divisibility sequences, i.e. $,(f_n,f_m) = f_{(n,m)}.,$ See here for the Fibonacci case.
      $endgroup$
      – Bill Dubuque
      May 23 '15 at 13:33













      34












      $begingroup$

      Below is a proof which has the neat feature that it immediately specializes
      to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.



      E.g. for $rm m,n = 15,21$



      $rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$



      for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$



      Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.



      Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$



      Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$



      W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$



      $begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
      quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
      quadRightarrow &rm (m', n'), &=& rm (m', r') \
      & &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
      & &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
      end{eqnarray}$



      Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.



      A deeper understanding comes when one studies Divisibility Sequences
      and Divisor Theory.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
        $endgroup$
        – Pedro Tamaroff
        Jun 18 '12 at 23:38












      • $begingroup$
        @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
        $endgroup$
        – Bill Dubuque
        Jun 19 '12 at 0:17


















      34












      $begingroup$

      Below is a proof which has the neat feature that it immediately specializes
      to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.



      E.g. for $rm m,n = 15,21$



      $rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$



      for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$



      Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.



      Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$



      Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$



      W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$



      $begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
      quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
      quadRightarrow &rm (m', n'), &=& rm (m', r') \
      & &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
      & &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
      end{eqnarray}$



      Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.



      A deeper understanding comes when one studies Divisibility Sequences
      and Divisor Theory.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
        $endgroup$
        – Pedro Tamaroff
        Jun 18 '12 at 23:38












      • $begingroup$
        @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
        $endgroup$
        – Bill Dubuque
        Jun 19 '12 at 0:17
















      34












      34








      34





      $begingroup$

      Below is a proof which has the neat feature that it immediately specializes
      to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.



      E.g. for $rm m,n = 15,21$



      $rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$



      for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$



      Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.



      Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$



      Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$



      W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$



      $begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
      quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
      quadRightarrow &rm (m', n'), &=& rm (m', r') \
      & &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
      & &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
      end{eqnarray}$



      Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.



      A deeper understanding comes when one studies Divisibility Sequences
      and Divisor Theory.






      share|cite|improve this answer











      $endgroup$



      Below is a proof which has the neat feature that it immediately specializes
      to a proof of the integer Bezout identity for $rm:x = 1,:$ allowing us to view it as a q-analog of the integer case.



      E.g. for $rm m,n = 15,21$



      $rmdisplaystylequadquadquadquadquadquadquad frac{x^3-1}{x-1} = (x^{15}! +! x^9! +! 1) frac{x^{15}!-!1}{x!-!1} - (x^9!+!x^3) frac{x^{21}!-!1}{x!-!1}$



      for $rm x = 1 $ specializes to $ 3 = 3 (15) - 2 (21):, $ i.e. $rm (3) = (15,21) := gcd(15,21)$



      Definition $rmdisplaystyle quad n' : := frac{x^n - 1}{x-1}:$. $quad$ Note $rmquad n' = n $ for $rm x = 1$.



      Theorem $rmquad (m',n') = ((m,n)') $ for naturals $rm:m,n.$



      Proof $ $ It is trivially true if $rm m = n $ or if $rm m = 0 $ or $rm n = 0.:$



      W.l.o.g. suppose $rm:n > m > 0.:$ We proceed by induction on $rm:n! +! m.$



      $begin{eqnarray}rm &rm x^n! -! 1 &=& rm x^r (x^m! -! 1) + x^r! -! 1 quad rm for r = n! -! m \
      quadRightarrowquad &rmqquad n' &=& rm x^r m' + r' quad rm by dividing above by x!-!1 \
      quadRightarrow &rm (m', n'), &=& rm (m', r') \
      & &=&rm ((m,r)') quad by induction, applicable by: m!+!r = n < n!+!m \
      & &=&rm ((m,n)') quad by r equiv n :(mod m)quad bf QED
      end{eqnarray}$



      Corollary $ $ Integer Bezout Theorem $ $ Proof: $ $ set $rm x = 1 $ above, i.e. erase primes.



      A deeper understanding comes when one studies Divisibility Sequences
      and Divisor Theory.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jul 4 '15 at 19:25

























      answered Oct 22 '10 at 1:51









      Bill DubuqueBill Dubuque

      213k29195654




      213k29195654












      • $begingroup$
        Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
        $endgroup$
        – Pedro Tamaroff
        Jun 18 '12 at 23:38












      • $begingroup$
        @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
        $endgroup$
        – Bill Dubuque
        Jun 19 '12 at 0:17




















      • $begingroup$
        Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
        $endgroup$
        – Pedro Tamaroff
        Jun 18 '12 at 23:38












      • $begingroup$
        @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
        $endgroup$
        – Bill Dubuque
        Jun 19 '12 at 0:17


















      $begingroup$
      Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
      $endgroup$
      – Pedro Tamaroff
      Jun 18 '12 at 23:38






      $begingroup$
      Is $((rm m,n)')$ supposed to be $((rm m,n))'$ i.e. $rm dfrac{x^{(m,n)}-1}{x-1}$?
      $endgroup$
      – Pedro Tamaroff
      Jun 18 '12 at 23:38














      $begingroup$
      @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
      $endgroup$
      – Bill Dubuque
      Jun 19 '12 at 0:17






      $begingroup$
      @Peter $ $ Let $rm:(m,n)' = dfrac{x^{,(m,n)}!-!1}{x!-!1} =: f.:$ Then $rm:((m,n)') = (f) = f:mathbb Z[x]:$ is a principal ideal, thus the equality $rm:(m',n') = ((m,n)'):$ denotes the ideal equality $rm:(g,h) = (f):$ for polynomials $rm:f,g,hinmathbb Z[x].:$ If you have no knowledge of ideals you can instead simply interpret it as saying that $rm:f:|:g,h:$ and $rm:f = a,g+b,h:$ for some $rm:a,bin mathbb Z[x],:$ which implies $rm:f = gcd(g,h).$
      $endgroup$
      – Bill Dubuque
      Jun 19 '12 at 0:17













      13












      $begingroup$

      Let $mge nge 1$. Apply Euclidean Algorithm.



      $gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get



      $gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:07


















      13












      $begingroup$

      Let $mge nge 1$. Apply Euclidean Algorithm.



      $gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get



      $gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:07
















      13












      13








      13





      $begingroup$

      Let $mge nge 1$. Apply Euclidean Algorithm.



      $gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get



      $gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$






      share|cite|improve this answer











      $endgroup$



      Let $mge nge 1$. Apply Euclidean Algorithm.



      $gcdleft(a^m-1,a^n-1right)=gcdleft(a^{n}left(a^{m-n}-1right),a^n-1right)$. Since $gcd(a^n,a^n-1)=1$, we get



      $gcdleft(a^{m-n}-1,a^n-1right)$. Iterate this until it becomes $$gcdleft(a^{gcd(m,n)}-1,a^{gcd(m,n)}-1right)=a^{gcd(m,n)}-1$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 8 '16 at 18:55

























      answered Oct 25 '15 at 10:23









      user236182user236182

      12k11333




      12k11333












      • $begingroup$
        And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:07




















      • $begingroup$
        And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:07


















      $begingroup$
      And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
      $endgroup$
      – Bill Dubuque
      Dec 31 '16 at 2:07






      $begingroup$
      And this too is a duplicate of an answer in the 5-year-old linked duplicate thread.
      $endgroup$
      – Bill Dubuque
      Dec 31 '16 at 2:07













      8












      $begingroup$

      More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$



      Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.



      $$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$



      $$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$



      $$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:03












      • $begingroup$
        Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
        $endgroup$
        – Bill Dubuque
        Jul 13 '17 at 20:44












      • $begingroup$
        I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
        $endgroup$
        – Vmimi
        Dec 2 '18 at 23:48
















      8












      $begingroup$

      More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$



      Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.



      $$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$



      $$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$



      $$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:03












      • $begingroup$
        Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
        $endgroup$
        – Bill Dubuque
        Jul 13 '17 at 20:44












      • $begingroup$
        I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
        $endgroup$
        – Vmimi
        Dec 2 '18 at 23:48














      8












      8








      8





      $begingroup$

      More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$



      Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.



      $$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$



      $$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$



      $$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$






      share|cite|improve this answer











      $endgroup$



      More generally, if $gcd(a,b)=1$, $a,b,m,ninmathbb Z^+$, $a> b$, then $$gcd(a^m-b^m,a^n-b^n)=a^{gcd(m,n)}-b^{gcd(m,n)}$$



      Proof: Since $gcd(a,b)=1$, we get $gcd(b,d)=1$, so $b^{-1}bmod d$ exists.



      $$dmid a^m-b^m, a^n-b^niff left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$$



      $$iff text{ord}_{d}left(ab^{-1}right)mid m,niff text{ord}_{d}left(ab^{-1}right)mid gcd(m,n)$$



      $$iff left(ab^{-1}right)^{gcd(m,n)}equiv 1pmod{d}iff a^{gcd(m,n)}equiv b^{gcd(m,n)}pmod{d}$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Dec 1 '17 at 10:31

























      answered Oct 4 '15 at 17:03









      user236182user236182

      12k11333




      12k11333












      • $begingroup$
        This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:03












      • $begingroup$
        Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
        $endgroup$
        – Bill Dubuque
        Jul 13 '17 at 20:44












      • $begingroup$
        I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
        $endgroup$
        – Vmimi
        Dec 2 '18 at 23:48


















      • $begingroup$
        This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
        $endgroup$
        – Bill Dubuque
        Dec 31 '16 at 2:03












      • $begingroup$
        Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
        $endgroup$
        – Bill Dubuque
        Jul 13 '17 at 20:44












      • $begingroup$
        I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
        $endgroup$
        – Vmimi
        Dec 2 '18 at 23:48
















      $begingroup$
      This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
      $endgroup$
      – Bill Dubuque
      Dec 31 '16 at 2:03






      $begingroup$
      This is precisely the homogenization $(a^n-1to a^n-b^n)$ of a proof in the 5-year-old duplicate thread linked in Yuan's comment on the question. To avoid posting such duplicate answers it's a good ides to first peruse duplicate links before posting an answer to a five year old question!
      $endgroup$
      – Bill Dubuque
      Dec 31 '16 at 2:03














      $begingroup$
      Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
      $endgroup$
      – Bill Dubuque
      Jul 13 '17 at 20:44






      $begingroup$
      Update: actually this homegenized version was posted 5 months prior in this answer.. There are probably older dupes too since this is a FAQ. Posting the link in case anyone decides to organize.
      $endgroup$
      – Bill Dubuque
      Jul 13 '17 at 20:44














      $begingroup$
      I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
      $endgroup$
      – Vmimi
      Dec 2 '18 at 23:48




      $begingroup$
      I didn't understand why if gcd$(a,b) =1$ then gcd$(b, d) =1$? and why $left(ab^{-1}right)^mequiv left(ab^{-1}right)^nequiv 1pmod{d}$?
      $endgroup$
      – Vmimi
      Dec 2 '18 at 23:48











      8












      $begingroup$

      More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$



      Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$



      and use $nmid a,biff nmid (a,b)$ to prove:



      $a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$



      $a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$



      $a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.



      Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.



      $(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).



      $a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.



      $a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$



      $(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
        $endgroup$
        – Vmimi
        Nov 30 '18 at 0:22


















      8












      $begingroup$

      More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$



      Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$



      and use $nmid a,biff nmid (a,b)$ to prove:



      $a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$



      $a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$



      $a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.



      Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.



      $(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).



      $a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.



      $a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$



      $(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
        $endgroup$
        – Vmimi
        Nov 30 '18 at 0:22
















      8












      8








      8





      $begingroup$

      More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$



      Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$



      and use $nmid a,biff nmid (a,b)$ to prove:



      $a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$



      $a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$



      $a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.



      Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.



      $(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).



      $a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.



      $a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$



      $(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$






      share|cite|improve this answer











      $endgroup$



      More generally, if $a,b,m,ninmathbb Z_{ge 1}$, $a>b$ and $(a,b)=1$ (as usual, $(a,b)$ denotes $gcd(a,b)$), then $$(a^m-b^m,a^n-b^n)=a^{(m,n)}-b^{(m,n)}$$



      Proof: Use $,x^k-y^k=(x-y)(x^{k-1}+x^{k-2}y+cdots+xy^{k-2}+x^{k-1}),$



      and use $nmid a,biff nmid (a,b)$ to prove:



      $a^{(m,n)}-b^{(m,n)}mid a^m-b^m,, a^n-b^niff$



      $a^{(m,n)}-b^{(m,n)}mid (a^m-b^m,a^n-b^n)=: d (1)$



      $a^mequiv b^m,, a^nequiv b^n$ mod $d$ by definition of $d$.



      Bezout's lemma gives $,mx+ny=(m,n),$ for some $x,yinBbb Z$.



      $(a,b)=1iff (a,d)=(b,d)=1$, so $a^{mx},b^{ny}$ mod $d$ exist (notice $x,y$ can be negative).



      $a^{mx}equiv b^{mx}$, $a^{ny}equiv b^{ny}$ mod $d$.



      $a^{(m,n)}equiv a^{mx}a^{ny}equiv b^{mx}b^{ny}equiv b^{(m,n)}pmod{! d} (2)$



      $(1)(2),Rightarrow, a^{(m,n)}-b^{(m,n)}=d$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 5 '18 at 23:28


























      community wiki





      8 revs
      user26486













      • $begingroup$
        What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
        $endgroup$
        – Vmimi
        Nov 30 '18 at 0:22




















      • $begingroup$
        What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
        $endgroup$
        – Vmimi
        Nov 30 '18 at 0:22


















      $begingroup$
      What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
      $endgroup$
      – Vmimi
      Nov 30 '18 at 0:22






      $begingroup$
      What is $d$? I don't understand why gcd$(b, d)=1 $ and why do you need that to be true?
      $endgroup$
      – Vmimi
      Nov 30 '18 at 0:22













      5












      $begingroup$

      Let
      $$gcd(a^n - 1, a^m - 1) = t$$
      then
      $$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
      And thus
      $$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
      $forall,x,,yin mathbb{Z}$



      According to the Extended Euclidean algorithm, we have
      $$nx + my =gcd(n,m)$$
      This follows
      $$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$



      Therefore
      $$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$






      share|cite|improve this answer











      $endgroup$


















        5












        $begingroup$

        Let
        $$gcd(a^n - 1, a^m - 1) = t$$
        then
        $$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
        And thus
        $$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
        $forall,x,,yin mathbb{Z}$



        According to the Extended Euclidean algorithm, we have
        $$nx + my =gcd(n,m)$$
        This follows
        $$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$



        Therefore
        $$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$






        share|cite|improve this answer











        $endgroup$
















          5












          5








          5





          $begingroup$

          Let
          $$gcd(a^n - 1, a^m - 1) = t$$
          then
          $$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
          And thus
          $$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
          $forall,x,,yin mathbb{Z}$



          According to the Extended Euclidean algorithm, we have
          $$nx + my =gcd(n,m)$$
          This follows
          $$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$



          Therefore
          $$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$






          share|cite|improve this answer











          $endgroup$



          Let
          $$gcd(a^n - 1, a^m - 1) = t$$
          then
          $$a^n equiv 1 ,big(text{ mod } tbig),quadtext{and}quad,a^m equiv 1 ,big(text{ mod } tbig)$$
          And thus
          $$a^{nx + my} equiv 1, big(text{ mod } tbig)$$
          $forall,x,,yin mathbb{Z}$



          According to the Extended Euclidean algorithm, we have
          $$nx + my =gcd(n,m)$$
          This follows
          $$a^{nx + my} equiv 1 ,big(text{ mod } tbig) = a^{gcd(n,m)} equiv 1 big(text{ mod } tbig)impliesbig( a^{gcd(n,m)} - 1big) big| t$$



          Therefore
          $$a^{gcd(m,n)}-1, =gcd(a^m-1, a^n-1) $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 1 '17 at 14:40

























          answered Dec 1 '17 at 14:34









          Darío A. GutiérrezDarío A. Gutiérrez

          2,66441530




          2,66441530























              3












              $begingroup$

              Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:





              If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
              $$
              left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
              $$
              and
              $$
              left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
              $$
              Thus, we have that
              $$
              left.p^g-1,middle|,Gright.
              $$





              For $xge0$,
              $$
              left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
              $$
              Therefore, we have that
              $$
              left.G,middle|,p^{ax}-1right.
              $$
              If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
              $$
              left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
              $$
              Therefore, for any $x,yge0$ so that $ax-byge0$,
              $$
              left.G,middle|,p^{ax-by}-1right.
              $$
              which means that
              $$
              left.G,middle|,p^g-1right.
              $$





              Putting all this together gives
              $$
              G=p^g-1
              $$






              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:





                If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
                $$
                left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
                $$
                and
                $$
                left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
                $$
                Thus, we have that
                $$
                left.p^g-1,middle|,Gright.
                $$





                For $xge0$,
                $$
                left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
                $$
                Therefore, we have that
                $$
                left.G,middle|,p^{ax}-1right.
                $$
                If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
                $$
                left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
                $$
                Therefore, for any $x,yge0$ so that $ax-byge0$,
                $$
                left.G,middle|,p^{ax-by}-1right.
                $$
                which means that
                $$
                left.G,middle|,p^g-1right.
                $$





                Putting all this together gives
                $$
                G=p^g-1
                $$






                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:





                  If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
                  $$
                  left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
                  $$
                  and
                  $$
                  left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
                  $$
                  Thus, we have that
                  $$
                  left.p^g-1,middle|,Gright.
                  $$





                  For $xge0$,
                  $$
                  left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
                  $$
                  Therefore, we have that
                  $$
                  left.G,middle|,p^{ax}-1right.
                  $$
                  If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
                  $$
                  left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
                  $$
                  Therefore, for any $x,yge0$ so that $ax-byge0$,
                  $$
                  left.G,middle|,p^{ax-by}-1right.
                  $$
                  which means that
                  $$
                  left.G,middle|,p^g-1right.
                  $$





                  Putting all this together gives
                  $$
                  G=p^g-1
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  Written for a duplicate question, this may be a bit more elementary than the other answers here, so I will post it:





                  If $g=(a,b)$ and $G=left(p^a-1,p^b-1right)$, then
                  $$
                  left(p^g-1right)sum_{k=0}^{frac ag-1}p^{kg}=p^a-1
                  $$
                  and
                  $$
                  left(p^g-1right)sum_{k=0}^{frac bg-1}p^{kg}=p^b-1
                  $$
                  Thus, we have that
                  $$
                  left.p^g-1,middle|,Gright.
                  $$





                  For $xge0$,
                  $$
                  left(p^a-1right)sum_{k=0}^{x-1}p^{ak}=p^{ax}-1
                  $$
                  Therefore, we have that
                  $$
                  left.G,middle|,p^{ax}-1right.
                  $$
                  If $left.G,middle|,p^{ax-(b-1)y}-1right.$, then
                  $$
                  left(p^{ax-(b-1)y}-1right)-p^{ax-by}left(p^b-1right)=p^{ax-by}-1
                  $$
                  Therefore, for any $x,yge0$ so that $ax-byge0$,
                  $$
                  left.G,middle|,p^{ax-by}-1right.
                  $$
                  which means that
                  $$
                  left.G,middle|,p^g-1right.
                  $$





                  Putting all this together gives
                  $$
                  G=p^g-1
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Mar 15 '18 at 14:32

























                  answered Mar 15 '18 at 14:11









                  robjohnrobjohn

                  269k27311638




                  269k27311638






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f7473%2fprove-that-gcdan-1-am-1-a-gcdn-m-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Nidaros erkebispedøme

                      Birsay

                      Was Woodrow Wilson really a Liberal?Was World War I a war of liberals against authoritarians?Founding Fathers...